

FLIGHT SAFETY FOUNDATION HELICOPTER SAFETY

Vol. 25 No. 5

For Everyone Concerned with the Safety of Flight

September–October 1999

Reports Show Pilot Error as the Major Cause of Helicopter Accidents in U.S. On-demand Operations

Accident reports for 1994 through 1998 also showed that each of the 48 accident aircraft was flown by one pilot and that all but one accident aircraft had turboshaft engines.

Joel S. Harris

U.S. National Transportation Safety Board reports on 48 accidents in 1994 through 1998 involving ondemand (commonly called unscheduled air-taxi) helicopter operations conducted under U.S. Federal Aviation Regulations Part 135 (Table 1, page 2) show that pilot error caused 28 accidents (58 percent).

Among other general findings of the reports were the following:

- Each of the 48 helicopters was flown by a single pilot;
- Forty-seven helicopters had turboshaft engines; one helicopter had a reciprocating engine;
- Forty-four helicopters were single-engine models; and,
- All the accidents occurred in the United States.

Among the pilots involved in the 28 pilot-error accidents, seven pilots had airline transport pilot (ATP) certificates and 21 pilots had commercial pilot certificates (Figure 1, page 5).

Among the pilots involved in the 20 accidents that did not involve pilot error, eight pilots had ATP certificates and 12 pilots had commercial pilot certificates.

The average total flight time (all aircraft) was 6,334 hours among the pilots involved in the pilot-error accidents; the average

rotorcraft flight time was 5,220 hours (Figure 2, page 5) among these pilots.

The average total flight time was 8,654 hours among the pilots involved in the non-pilot-error accidents; the average rotorcraft flight time was 7,714 hours among these pilots.

Sixteen accidents were fatal (Figure 3, page 5); 46 people were killed. Nine accidents involved serious injuries¹ received by at least one helicopter occupant. Eight accidents involved minor injuries received by at least one helicopter occupant. Fifteen accidents

resulted in no injuries.

Eighteen aircraft were destroyed, 27 aircraft were substantially damaged,² and three aircraft were not damaged (Figure 4, page 5).

Two accidents in which no aircraft damage occurred involved passengers who walked into rotating tail rotors.

One tail-rotor-strike accident occurred Nov. 20, 1994, in Juneau, Alaska. The accident report³ said that the pilot of a Bell 206B "landed his aircraft and locked the controls down while the engine and rotors were turning at flight idle." The pilot exited the cockpit and began refueling the helicopter. A company employee approached the pilot and asked if he could get a ride to the next destination. The pilot agreed to take the employee on the flight.

Table 1U.S. On-demand* Helicopter Accidents, 1994–1998

Date	Location	Aircraft Type	PIC Certificate	Rotorcraft Time (hours)	Aircraft Damage	Injuries
Jan. 20, 1994 The helicopter :	Lebec, California struck a power-transmissic	Aerospatiale AS-350D n cable while being landed	commercial at a site that was	6,000/5,000 not familiar to the p	destroyed ilot.	2 fatal
	Humuula, Hawaii Intered IMC at 10,500 feet untered a downdraft.	Aerospatiale AS-350B and attempted to turn arour	commercial nd; he was unable	5,757/5,272 to maintain altitude	substantial when airspee	2 serious; 5 none d decreased and th
March 25, 1994 The pilot lost vi nelicopter then	sual contact with the grour	Hughes 369D ad when he encountered a s	commercial steam cloud while	5,025/4,900 hovering at five fee	substantial t near a volcar	2 minor no vent. The
	Wrangell, Alaska s struck a tree stump durir	Bell 206B ng a landing at a logging site	commercial e.	2,385/2,102	destroyed	1 minor; 1 none
April 1, 1994 Vhile being ma	Telluride, Colorado neuvered to land at 12,80	Aerospatiale AS-350B2 D feet, the helicopter encour		7,100/3,900 , settled and struck	substantial terrain.	1 serious; 5 mino
		Bell 206B-3 of adverse weather. After w tion. During the autorotative				
April 9, 1994 The helicopter : closed the fuel		Hiller UH12E shut-off lever was moved in	ATP advertently betwe	18,000/2,200 een the "on" positior	substantial and the "off" p	2 none position, which
luly 13, 1994 The pilot lost co	Galveston, Texas	Aerospatiale AS-350B1 n a main-rotor servo becarr		8,076/6,476 because of improper	destroyed	4 fatal; 1 serious
uly 14, 1994 he pilot condu wo passengers		Aerospatiale AS-350D og on water after the engine	ATP -driven fuel pump	12,800/7,348 failed. The helicopt	substantial er did not have	3 fatal; 4 none floats. The pilot an
luly 14, 1994 The float-equip	Molokai, Hawaii ped helicopter was hoverir	Aerospatiale AS-350B g 150 feet over the ocean v	commercial vhen rotor speed	3,497/3,284 decreased, resulting	substantial g in a forced la	1 serious; 6 none nding on the water.
uly 19, 1994 he helicopter	Juneau, Alaska pitched forward while being	Aerospatiale AS-350 g landed on a glacier, and th	ATP ne main rotor blad	2,130/2,114 les struck the ice.	substantial	7 none
uly 29, 1994 The helicopter s operating altitud		Bell 206 anded on a mountain summ	commercial it at 11,070 feet, v	6,950/6,950 which was above th	substantial e helicopter's c	2 serious; 3 none certified maximum
Nug. 11, 1994 A cracked turbir	Kukuihaele, Hawaii ne-governor fitting caused a	Aerospatiale AS-350D a partial loss of power. The ro	commercial otor blades struck	4,000/3,500 rocks during the pre	substantial ecautionary land	7 none ding in rough terrain
Nug. 12, 1994 The pilot encou	Whiting, New Jersey Intered IMC during a night	Bell 206L-4 VFR flight. The helicopter d	commercial escended steeply	1,417/1,392 into terrain.	destroyed	3 fatal
	to maintain adequate roto	Hughes 369E speed during takeoff from a			substantial kid struck a rid	1 minor; 4 none ge, and the
Dct. 24, 1994 Naintenance pe	Kaupo, Hawaii ersonnel failed to wash the	Eurocopter AS-350D engine compressor. The he	commercial elicopter struck tre	3,216/3,214 es after losing pow	substantial er.	4 minor
lov. 20, 1994 Company em	Juneau, Alaska ployee stooped to walk und	Bell 206B der the tail boom of the park	commercial ed helicopter and	2,357/2,357 I was struck by the I	none rotating tail roto	1 fatal; 1 none or.
an. 14, 1995 he helicopter v	Los Angeles, California was being flown in fog and	Bell 206B rain below a 300-foot broken	ATP ceiling when it st	4,421/389 ruck wires about 150	destroyed) feet (46 mete	2 fatal; 2 serious rs) above the ground
an. 28, 1995 he helicopter l	Miami, Florida landed hard in autorotative	Bell 206B flight after losing engine po	commercial ower at 800 feet b	2,500/2,500 ecause of a loose f	substantial uel-control line	3 none
eb. 14, 1995 he helicopter :	Gulf of Mexico struck the water during a V	Bell 206L-4 FR flight in IMC.	commercial	3,755/3,755	destroyed	5 fatal
/lay 2, 1995	Venice, Louisiana	Bell 206L-3 n offshore oil platform when	ATP	9,806/8,216	destroyed	1 fatal; 2 serious

 Table 1

 U.S. On-demand* Helicopter Accidents, 1994–1998 (continued)

Date	Location	Aircraft Type	PIC Certificate	PIC Total Time/ Rotorcraft Time (hours)	Aircraft Damage	Injuries
May 3, 1995 An engine-beari separated.	Sea Bright, New Jersey ng failure resulted in an atte	Aerospatiale AS-350D mpted autorotative landing	commercial on water. During	5,500/5,500 g the flare, the tail ro	substantial otor struck the	2 none water and
May 31, 1995 After the occupa	Skagway, Alaska ints boarded, the helicopter	Aerospatiale AS-350B slid on ice and rolled onto	commercial its side. The engi	2,480/2,170 ine was not running	substantial	7 none
June 26, 1995 The helicopter w	Highland, California as being flown with the door	Hughes 369D rs removed when unsecure	commercial ed passenger bel	12,000/NA ongings exited the	substantial cabin and strue	1 serious; 3 minor ck the tail rotor.
July 18, 1995 Fuel contaminat	Paxson, Alaska ion resulted in a loss of engi	Hughes 369D ne power at 5,000 feet. Th	commercial e main rotor seve	14,000/14,000 ered the tail boom d	substantial uring the autor	2 none rotative landing.
Aug. 27, 1995 An engine turbin	Oklahoma City, Oklahoma e governor failed during take		ATP I. The helicopter v	7,583/7,583 vas landed on an ur	substantial neven field.	4 none
Oct. 11, 1995 The engine lost autorotative land	Hana, Hawaii power during takeoff becaus ling.	Hughes 369HS e of a leaking fuel-filter by	commercial pass switch. The	2,825/2,805 main rotor severed	substantial the tail boom	4 minor; 1 none during the
Feb. 10, 1996 The helicopter s	Gulf of Mexico truck the water at high spee	MBB BO-105S d and in a near-level attitud	commercial de. The report sa	11,288/11,288 id that IMC was a p	destroyed ossible factor.	2 fatal
June 21, 1996 The helicopter s	Sabine Pass, Texas truck water in the Gulf of Me	MBB BO-105S xico after the main-rotor-tr	ATP ransmission sun	20,459/17,663 gear failed.	destroyed	4 fatal
July 24, 1996 The helicopter re	Warren, Idaho blled onto its side while park	Bell 206B ed, with the rotors turning,	ATP , on a makeshift I	3,600/3,600 anding platform.	destroyed	1 fatal; 2 minor
	Healy, Alaska tail-rotor drive shaft was sev gency landing. The airplane v			9,000/9,000 vith a Cessna 185. ⁻	none The pilot made	4 minor; 5 none a partially
Sept. 13, 1996 The helicopter s	Cantwell, Alaska truck terrain during a VFR fli	Bell 206B ght in IMC.	commercial	8,310/8,160	destroyed	1 serious; 2 minor
	Morgan City, Louisiana -rotor control at 500 feet aften n the Gulf of Mexico.	Bell 206L-1 er the tail-rotor blades wer	ATP e struck by an ur	16,000/14,500 known object. The f	substantial float-equipped	1 minor; 5 none helicopter came to
Oct. 14, 1996 The helicopter lo boom.	Venice, Louisiana ost power on takeoff when fro	Bell 206L-3 ogs were ingested into the	commercial engine. During la	13,967/13,967 anding, a main-roto	substantial r blade flexed a	4 none and severed the tail
Nov. 12, 1996 Failure of the en	Hana, Hawaii gine-spur-adapter gear shaf	Hughes 369D t resulted in an autorotativ	commercial re landing in mou	5,350/5,130 ntainous terrain.	substantial	5 none
Nov. 28, 1996 After a tail-rotor platform.	Gulf of Mexico pitch-change link disconnec	Eurocopter AS-350B2 ted because of a fatigue fr	ATP acture, the pilot a	5,378/NA attempted unsucces	destroyed sfully to land c	3 fatal on a drilling
Dec. 9, 1996 The pilot lost tail	Gulf of Mexico -rotor control when the tail s	Aerospatiale AS-350B truck a crane during a how	commercial /er turn on an offs	5,391/5,187 shore oil platform.	substantial	2 none
Dec. 12, 1996 The medical-eva	Penn Yan, New York cuation helicopter struck ris	MBB BO-105 ing terrain during a night V	commercial /FR flight in IMC.	4,450/4,450	destroyed	3 fatal
Feb. 21, 1997 The helicopter w	Milolii, Hawaii /as landed hard after the tail	Hughes 369D rotor failed for undetermin	commercial ned reasons.	8,575/8,575	substantial	3 serious; 1 minor
	Mountain Spring, Nevada d two approaches to a moun terrain during the third land		ATP when the helicop	10,994/10,923 ter encountered turk	destroyed oulent winds or	1 serious; 2 minor n short final. The
March 4, 1997 The pilot lost cor	Jamaica Beach, Texas ntrol of the helicopter after e	Bell 206L-1 ncountering IMC during a	ATP VFR flight in the	11,593/6,009 Gulf of Mexico.	destroyed	1 minor; 4 none
	Weston, Colorado ted to conduct a 360-degree ttled into trees and rolled ov		commercial dge. The helicopt	1,800/798 er encountered unfa	substantial avorable winds	5 none during the turn,

 Table 1

 U.S. On-demand* Helicopter Accidents, 1994–1998 (continued)

			PIC	PIC Total Time/ Rotorcraft	Aircraft	
Date	Location	Aircraft Type	Certificate	Time (hours)	Damage	Injuries
July 26, 1997 A passenger wa	Pollock Pines, California Iked toward the helicopter from	Bell 206B om the rear and was strucl	commercial to by the rotating	7,000/7,000 tail rotor.	none	1 serious; 4 none
Sept. 12, 1997 During a flight w	Brinkley, Arkansas vith the cabin door removed,	Hughes 369HS the pilot lost tail-rotor cont	ATP rol when an obje	18,000/3,500 ct struck the tail rot	substantial or.	4 none
Oct. 12, 1997 The helicopter s	Sago, West Virginia truck terrain after losing eng	Bell 206B ine power because the tur	commercial bine governor ha	14,000/14,000 d been overhauled	destroyed improperly.	4 fatal
Jan. 11, 1998 The medical-eva	Sandy, Utah acuation helicopter struck mo	Bell 222UT ountainous terrain after tak	ATP ing off at night in	6,257/4,871 adverse weather.	destroyed	4 fatal
April 17, 1998 The helicopter lo	Cameron, Louisiana ost engine power for undetern	Bell 206B nined reasons during final a	ATP approach. The ma	13,371/13,272 ain rotor severed the	substantial e tail boom duri	5 none ing the hard landing.
June 7, 1998 The helicopter v	Corpus Christi, Texas vas on final approach to land	Bell 206B I when a tail rotor drive sha	commercial aft coupling sepa	9,583/7,760 rated for undetermi	substantial ned reasons.	4 none
ATP = Airline tra MD = McDonne * Unscheduled o			nmand VFR	Messerschmitt-Bol = Visual flight rules		
Source: Joel S. H	arris and U.S. National Transpor	tation Safety Board				

"The employee started to walk toward his truck to retrieve his luggage and, in doing so, ducked under the tail boom of the helicopter," the report said. "The employee was struck [and killed] by the tail-rotor blade."

The report said that the employee "had worked around helicopters in the past and had received company training concerning the dangers of helicopter rotor blades." The report said that the probable cause of the accident was "the employee's disregard for company training and policies about the dangers of helicopter rotor blades." The report said that a factor in the accident was "running [the] aircraft with the rotors turning."

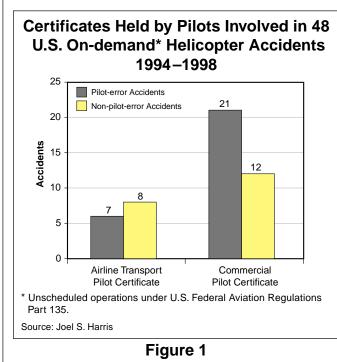
The other tail-rotor-strike accident resulted in serious injuries to the victim.

Forty accidents occurred during daylight hours, four accidents occurred at night, and four accidents occurred during dawn or dusk.

Thirty-seven accidents occurred in visual meteorological conditions, and 10 accidents occurred in instrument meteorological conditions (IMC). One accident report said that the weather conditions were unknown.

None of the accident aircraft was being operated under instrument flight rules at the time of the accident.

The 48 accidents resulted from the following major factors: complete loss of engine power or partial loss of engine power; loss of tail-rotor control; adverse weather conditions; pilot loss of aircraft control for nonmechanical reasons; miscellaneous mechanical factors; and other factors (Figure 5, page 6).


Loss of engine power resulted in 15 accidents, four of which were fatal. Causes of engine-power loss included internalcomponent-fatigue failure, engine-governor failure, snow ingestion, inadequate maintenance and fuel contamination.

The snow-ingestion accident occurred April 3, 1994, in Lamoille, Nevada. The report⁴ said that the pilot landed a Bell 206B-3 at a remote site because of adverse weather. While the pilot and four passengers waited for the weather to improve, snow accumulated on the helicopter. Engine covers were not available. The engine air-induction system had snow baffles and particle separators; the engine did not have an automatic re-light ignition system.

"The plenum at the engine intake was inaccessible to the pilot, [and this prevented] removal of any snow that may have accumulated," said the report.

About one hour after landing, the pilot started the engine and operated it for approximately 15 minutes to 20 minutes. About two hours after landing, he started the engine and operated it for approximately five minutes. Then, after discussing the situation by radio with the company director of operations, the pilot attempted to take off.

Density altitude was approximately 7,000 feet. Takeoff weight was approximately 2,940 pounds (1,334 kilograms); the helicopter's maximum certificated takeoff weight is 3,200 pounds (1,452 kilograms).

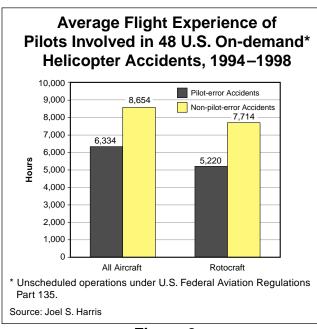
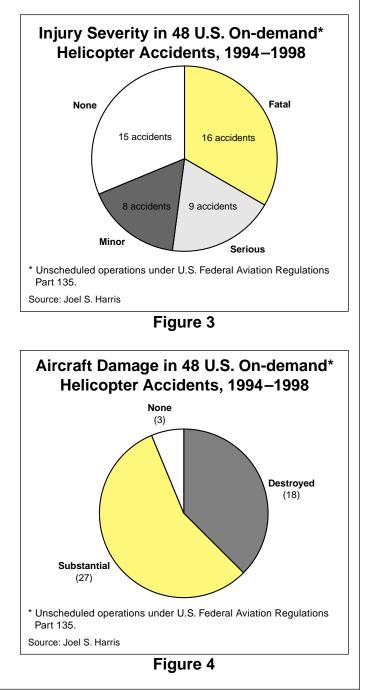
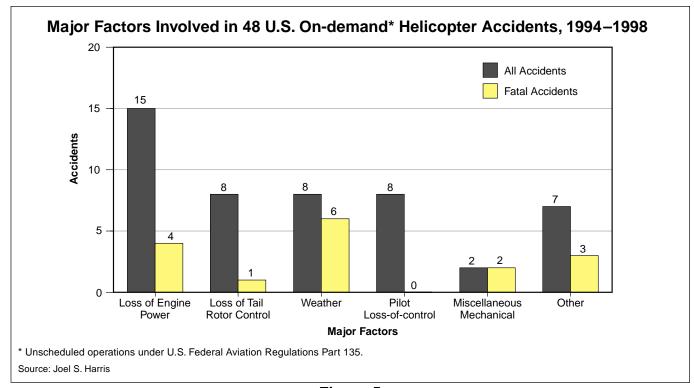


Figure 2


"The flight manual showed that at 2,940 pounds, the maximum density altitude for a safe autorotative landing was 2,500 feet," said the report.


The engine lost power soon after takeoff. During autorotation, the helicopter struck a slope and rolled over. The pilot and three passengers were killed; one passenger was seriously injured.

The report said that the probable cause of the accident was "the ingestion of foreign material (snow) into the engine, which resulted in a flameout." The report said that a factor in the accident was "improper planning/decision [making]" by the pilot and by the company director of operations.

Another accident caused by foreign-material ingestion occurred Oct. 14, 1996, in Venice, Louisiana. The report⁵ said that a Bell 206L-3 was at approximately 50 feet on takeoff when the pilot heard "a big pop" and felt the helicopter begin to shake. The pilot conducted a precautionary landing. He told investigators that he initiated a "deceleration to land" because of wires in front of the helicopter. During the landing, a mainrotor blade flexed and severed the tail boom. None of the four occupants was injured.

The report said that the probable causes of the accident were "a loss of engine power due to frogs being ingested into the engines as a result of the pilot's failure to perform a thorough preflight [inspection] and the pilot's improper touchdown technique."

The reciprocating-engine helicopter accident occurred April 9, 1994, in Valdez, Alaska. The report⁶ said that the accident resulted from a total loss of power when the fuel shutoff valve in a Hiller UH12E was moved inadvertently to a position between the "on" position and the "off" position.

The fuel shutoff valve is "located near the cockpit floor, in the area where the pilot and passenger normally place their feet," said the report.

The report said, "Testing revealed that, with the lever at half travel, the fuel valve was fully closed."

The two occupants were not injured, but the helicopter was damaged substantially during the forced landing.

Loss of tail-rotor control resulted in eight accidents, including one fatal accident. The tail-rotor control losses were caused by tail-rotor-component failures, contact with objects during hovering flight, tail-rotor strikes by objects that exited the cabins of helicopters being flown with the doors removed and a midair collision with an airplane.

The fatal loss-of-tail-rotor-control accident involved a Eurocopter AS-350B2 during a flight Nov. 28, 1996, between two drilling platforms in the Gulf of Mexico. The report⁷ said that the pilot radioed that the tail-rotor gearbox chip light had illuminated and that he was experiencing a "very high vibration [that] settled down a little bit at a slower airspeed." A few minutes later, the pilot reported that he was flying the helicopter toward a platform three nautical miles (5.6 kilometers) away.

The pilot then reported that, during his first attempt to land on the platform, he could not control the tail rotor. He said that he would attempt one more landing on the platform and that, if he was unable to land on the platform, he would fly the helicopter to Galveston, Texas. This was the last radio transmission received from the pilot.

The wreckage of the helicopter was found in about 50 feet (15 meters) of water approximately 35 feet (11 meters) from the platform. The platform control shed, which is located below the platform helipad, was damaged, and helicopter debris was found on the control-shed level and on the level below the control shed. The pilot and the two passengers were killed in the accident.

Examination of the helicopter's tail-rotor system revealed that a pitch-change link had disconnected because of a fatigue fracture.

The report said that the probable cause of the accident was the "pilot's failure to use the proper emergency procedure as outlined in the [aircraft] flight manual."

The report said, "The operator's standard operating procedure for a loss of tail-rotor control is to comply with the instructions given in the flight manual. The flight manual's instructions are, in part, to make a shallow approach [with a slight left sideslip] to a run-on landing [in a clear area]."

Two loss-of-tail-rotor-control accidents occurred when the helicopters were being flown with the doors removed and objects exited the cabins and struck the tail rotors. One of the accidents occurred Sept. 12, 1997, in Brinkley, Arkansas, and involved a Hughes 369HS helicopter that was transporting a television crew to high-school football games. The report⁸ said that the pilot had removed the left rear door to facilitate aerial photography of the football games.

The helicopter was in cruise flight at approximately 500 feet when the pilot heard a loud bang and the helicopter yawed right.

"The pilot said that movement of the directional-control pedals was ineffective," the report said. "He made a run-on landing, but the helicopter impacted two levees, separating the right skid from the aircraft. The aircraft rotated to the right and came to a stop upright." None of the four occupants was injured.

Examination of the helicopter revealed that the tail-rotor drive shaft had separated and that the leading edge of one tail-rotor blade had small indentations that were similar in appearance to a zipper.

"[The indentations had] a brass-like appearance, which may be transferred metal," said the report. Tests by the aircraft manufacturer confirmed that the material transferred to the tail-rotor blade leading edge was brass.

The report said that the probable causes of the accident were "the in-flight collision of the tail-rotor blade with an object that had a brass zipper on it and the subsequent overload and failure of the tail-rotor drive shaft." The report said that a contributing factor was "the unsuitable terrain for the forced landing."

Adverse weather conditions were involved in eight accidents, six of which were fatal. The accident reports cited the following probable causes: "continued VFR [visual flight rules] flight into IMC," "inadvertent IMC" and "flight into known adverse weather." Several reports also cited spatial disorientation of the pilots.

One weather-related accident occurred during a medicalevacuation flight Jan. 11, 1998, in Sandy, Utah. The report⁹ said that the pilot of a Bell 222UT was dispatched from a hospital helipad to rescue a skier who had been injured in an avalanche. No snow was falling at the hospital when the helicopter departed, but light-to-moderate snow was falling where the pilot landed the helicopter to pick up the skier. After landing, the pilot learned that adverse weather had developed at the hospital.

"The dispatcher telephoned the pilot ([who was] using a cellular phone) to advise him that hospital weather conditions had deteriorated due to a fast-moving front," the report said. "She said [that] it was 'snowing really hard,' the winds were gusting to 37 knots and visibility was less than 300 feet [92 meters]."

Weather also deteriorated at the pick-up site. One witness said that the helicopter took off in blizzard conditions. "It was snowing, and the wind was gusting to 35 knots [65 kilometers per hour]," the witness said.

Another witness said that the helicopter circled the landing zone while climbing, then "turned north and disappeared from view." The witness then heard "a slight, muffled boom."

The four occupants were killed when the helicopter struck mountainous terrain in darkness. The report said that the probable cause of the accident was "flight by the pilot into known adverse weather conditions."

Eight accidents occurred when the pilots lost control of their helicopters for nonmechanical reasons; none of the accidents was fatal.

One loss-of-control accident occurred Sept. 3, 1994, in Volcano, Hawaii. The report¹⁰ said that, while conducting a sightseeing flight with four passengers, the pilot encountered IMC and landed the helicopter to wait for the weather to clear. The landing site was at 7,500 feet.

After the weather cleared, "a low battery [charge] prevented the engine from starting," said the report.

The company dispatched another helicopter (a Hughes 369E, the accident helicopter), with a pilot and a maintenance technician aboard, to retrieve the passengers. The pilot and maintenance technician remained at the landing site with the disabled helicopter while the pilot and passengers from the disabled helicopter departed in the accident helicopter.

During lift-off, the passengers "heard and observed the lowrotor-rpm annunciator," and the helicopter's nose moved about 45 degrees to the right. The left landing gear skid struck a small ridge, and the helicopter rolled over. One occupant received a minor injury. The four passengers, the two pilots and the maintenance technician remained overnight at the accident site and were rescued the following day.

The report said that the probable causes of the accident were "the pilot's failure to maintain adequate main-rotor rpm and the resultant inadvertent skid contact with the ground."

Miscellaneous mechanical factors were involved in two accidents, both of which were fatal.

One of the accidents occurred July 13, 1994, near Galveston, Texas. The report¹¹ said that the pilot of an Aerospatiale AS-350B1 felt a bump "similar to turbulence" while climbing through 2,000 feet. The pilot said that he felt two more bumps — the second of which was more pronounced than the first and then lost control of the helicopter. The helicopter descended into the Gulf of Mexico. The four passengers were killed, and the pilot was seriously injured.

During reconstruction of the recovered helicopter, "the left lateral servo-rod end was found disconnected from the servo extension," said the report. The servo changes the attitude of the helicopter by changing the angle-of-attack of the main-rotor blades.

The report said that the probable cause of the accident was "inadequate torquing of the left lateral servo by maintenance personnel, which allowed it to become disconnected from the controls, leading to an in-flight loss of control."

Seven accidents, including three fatal accidents, resulted from other factors: Two accidents occurred when main-rotor blades struck objects; two accidents occurred when people walked into rotating tail-rotor blades; two accidents occurred when helicopters were landed at sites that were unsuitable for landing; and, one helicopter struck wires during an approach to a mountain helipad.◆

Notes and References

- The U.S. National Transportation Safety Board (NTSB) defines a serious injury as "any injury which: (1) requires hospitalization for more than 48 hours, commencing within seven days from the date the injury was received; (2) results in a fracture of any bone (except simple fractures of fingers, toes or nose); (3) causes severe hemorrhages, nerve, muscle or tendon damage; (4) involves any internal organ; or (5) involves second-[degree burns] or third-degree burns, or any burns affecting more than 5 percent of the body surface."
- 2. NTSB defines substantial damage as "damage or failure which adversely affects the structural strength, performance or flight characteristics of the aircraft and which would normally require major repair or replacement of the affected component. Engine failure or damage limited to an engine if only one engine fails or is damaged,

bent fairings or cowling, dented skin, small punctured holes in the skin or fabric, ground damage to rotor [blades] or propeller blades, and damage to landing gear, wheels, tires, flaps, engine accessories, brakes or wing tips are not considered 'substantial damage.'"

- 3. NTSB accident report ANC95LA012.
- 4. NTSB accident report SEA94FA096.
- 5. NTSB accident report FTW97LA016.
- 6. NTSB accident report ANC94LA045.
- 7. NTSB accident report FTW97FA051.
- 8. NTSB accident report FTW97LA347.
- 9. NTSB accident report FTW98FA093.
- 10. NTSB accident report LAX94LA352.
- 11. NTSB accident report FTW94FA231.

About the Author

Joel S. Harris has an airline transport pilot certificate and a flight instructor certificate with ratings in helicopters and airplanes. He is a U.S. Federal Aviation Administration designated pilot-proficiency examiner, Federal Aviation Regulations Part 135 check airman and safety counselor. Harris is assistant director of standards for quality assurance at FlightSafety International. He has administered more than 10,000 hours of flight, simulator and ground-school training to professional helicopter pilots.

Visit our World Wide Web site at http://www.flightsafety.org

HELICOPTER SAFETY Copyright © 1999 FLIGHT SAFETY FOUNDATION INC. ISSN 1042-2048

Suggestions and opinions expressed in FSF publications belong to the author(s) and are not necessarily endorsed by Flight Safety Foundation. Content is not intended to take the place of information in company policy handbooks and equipment manuals, or to supersede government regulations.

Staff: Roger Rozelle, director of publications; Mark Lacagnina, senior editor; Wayne Rosenkrans, senior editor; Linda Werfelman, senior editor; John D. Green, copyeditor; Karen K. Ehrlich, production coordinator; Ann L. Mullikin, production designer; Susan D. Reed, production specialist; and David A. Grzelecki, librarian, Jerry Lederer Aviation Safety Library.

Subscriptions: US\$60 (U.S.-Canada-Mexico), US\$65 Air Mail (all other countries), six issues yearly. • Include old and new addresses when requesting address change. • Flight Safety Foundation, Suite 300, 601 Madison Street, Alexandria, VA 22314 U.S. • Telephone: +1(703) 739-6700 • Fax: +1(703) 739-6708

We Encourage Reprints

Articles in this publication may, in the interest of aviation safety, be reprinted, in whole or in part, in all media, but may not be offered for sale or used commercially without the express written permission of Flight Safety Foundation's director of publications. All reprints must credit Flight Safety Foundation, *Helicopter Safety*, the specific article(s) and the author(s). Please send two copies of the reprinted material to the director of publications. These reprint restrictions apply to all prior and current Flight Safety Foundation publications.

What's Your Input?

In keeping with FSF's independent and nonpartisan mission to disseminate objective safety information, Foundation publications solicit credible contributions that foster thought-provoking discussion of aviation safety issues. If you have an article proposal, a completed manuscript or a technical paper that may be appropriate for *Helicopter Safety*, please contact the director of publications. Reasonable care will be taken in handling a manuscript, but Flight Safety Foundation assumes no responsibility for submitted material. The publications staff reserves the right to edit all published submissions. The Foundation buys all rights to manuscripts and payment is made to authors upon publication. Contact the Publications Department for more information.