The following braking devices are used to decelerate the aircraft until it stops:

- Ground spoilers;
- Wheel brakes (including anti-skid systems and autobrake systems); and,
- Thrust-reverser systems.

Statistical Data

The Flight Safety Foundation Approach-and-landing Accident Reduction (ALAR) Task Force found that runway excursions and runway overruns were involved in 20 percent of 76 approach-and-landing accidents and serious incidents worldwide in 1984 through 1997.1

The task force also found that delayed braking action during the landing roll-out was involved in some of the accidents and serious incidents in which slow/delayed crew action was a causal factor.2 Slow/delayed crew action was a causal factor in 45 percent of the 76 accidents and serious incidents.

Braking Devices

Ground Spoilers

Ground spoilers usually deploy automatically (if armed) upon main-landing-gear touchdown or upon activation of thrust reversers.

Ground spoilers provide two aerodynamic effects:
- Increased aerodynamic drag, which contributes to aircraft deceleration; and,
- Lift-dumping, which increases the load on the wheels and, thus, increases wheel-brake efficiency (Figure 1, page 174).

Wheel Brakes

Braking action results from the friction force between the tires and the runway surface.

The friction force is affected by:

- Aircraft speed;
- Wheel speed (i.e., free-rolling, skidding or locked);
- Tire condition and pressure (i.e., friction surface);
- Runway condition (i.e., runway friction coefficient);
- The load applied on the wheel; and,
- The number of operative brakes (as shown by the minimum equipment list [MEL]/dispatch deviation guide [DDG]).

Braking force is equal to the load applied on the wheel multiplied by the runway friction coefficient.

Anti-skid systems are designed to maintain the wheel-skidding factor (also called the slip ratio) near the point providing the maximum friction force, which is approximately 10 percent on a scale from zero percent (free-rolling) to 100 percent (locked wheel), as shown by Figure 2 (page 174).
Effects of Nosewheel Contact and Ground Spoilers
On Weight-on-wheels and Aerodynamic Drag

- Negligible Weight on Main Wheels
- 60 Percent Weight on Main Wheels
- 85 Percent Weight on Main Wheels
- Plus 130 Percent Drag Increase From Spoilers

V_{REF} = Reference landing speed

Source: Flight Safety Foundation Approach-and-landing Accident Reduction (ALAR) Task Force

Figure 1

Effect of Anti-skid on Friction Force
And Slip Ratio

- Free-rolling Wheel
- Anti-skid Activation
- Locked Wheel

Source: Flight Safety Foundation Approach-and-landing Accident Reduction (ALAR) Task Force

Figure 2

Thrust Reversers

Thrust reversers provide a deceleration force that is independent of runway condition.

Thrust-reverser efficiency is higher at high airspeed (Figure 3); therefore, thrust reversers must be selected as early as possible after touchdown (in accordance with standard operating procedures [SOPs]).

Figure 3

With anti-skid operative, maximum pedal braking results typically in a deceleration rate of eight knots to 10 knots per second.

Autobrake systems are designed to provide a selectable deceleration rate, typically between three knots per second and six knots per second.

When a low autobrake deceleration rate (referred to hereafter as a “LOW” mode) is selected, brake pressure is applied usually after a specific time delay to give priority to the thrust-reverser deceleration force at high airspeed.

Figure 3

Typical Decelerating Forces
During Landing Roll

Source: Flight Safety Foundation Approach-and-landing Accident Reduction (ALAR) Task Force
Thrust reversers should be returned to reverse idle at low airspeed (to prevent engine stall or foreign object damage) and stowed at taxi speed.

Nevertheless, maximum reverse thrust can be maintained to a complete stop in an emergency.

Runway Conditions

Runway contamination increases impingement drag (i.e., drag caused by water or slush sprayed by the tires onto the aircraft) and displacement drag (i.e., drag created as the tires move through a fluid contaminant [water, slush, loose snow] on the runway), and affects braking efficiency.

The following landing distance factors are typical:
- Wet runway, 1.3 to 1.4;
- Water-contaminated or slush-contaminated runway, 2.0 to 2.3;
- Compacted-snow-covered runway, 1.6 to 1.7; and,
- Icy runway, 3.5 to 4.5.

Typical Landing Roll

Figure 3 shows a typical landing roll and the relation of the different deceleration forces to the total stopping force as a function of decelerating airspeed (from touchdown speed to taxi speed).

The ground spoilers are armed and the autobrakes are selected to the “LOW” mode (for time-delayed brake application).

The autobrake demand in “LOW” mode (typically, three knots per second constant deceleration rate) is equivalent, at a given gross weight, to a constant deceleration force.

At touchdown, the ground spoilers automatically extend and maximum reverse thrust is applied.

The resulting total stopping force is the combined result of:
- Aerodynamic drag (the normal drag of the airplane during the roll-out, not the drag produced by the incorrect technique of keeping the nose high during an extended landing flare);
- Reverse thrust; and,
- Rolling drag.

Autobrake activation is inhibited because the total stopping force exceeds the selected rate of the autobrakes or because of the autobrake time delay.

As airspeed decreases, total stopping force decreases because of a corresponding decrease in:
- Aerodynamic drag; and,
- Reverse thrust efficiency.

When the total stopping force becomes lower than the autobrake setting or when the autobrake time delay has elapsed, the wheel brakes begin contributing to the total deceleration and stopping force.

Typically, at 60 knots indicated airspeed (KIAS) to 80 KIAS, the thrust-reverser levers are returned to the reverse-idle position (then to the stow position at taxi speed).

As a result, the wheel brakes’ contribution to stopping force increases to maintain the desired deceleration rate (autobrake demand) to a complete stop or until the pilot takes over with pedal braking.

Ground Spoilers, Thrust Reversers and Brakes Stop the Aircraft

Figure 4 (page 176) shows the respective contributions of the different braking devices to total stopping energy, as a function of the achieved or desired stopping distance.

Figure 4 shows the following:
- For a given braking procedure (maximum pedal braking or autobrake mode), the stopping distance; and,
- For a desired or required stopping distance, the necessary braking procedure (maximum pedal braking or autobrake mode).

Factors Affecting Braking

The following factors have affected braking in runway excursions or runway overruns:
- Failure to arm ground spoilers, with thrust reversers deactivated (e.g., reliance on a thrust-reverser signal for ground-spoilers extension, as applicable);
- Failure to use any braking devices (i.e., reliance on the incorrect technique of maintaining a nose-high attitude after touchdown to achieve aerodynamic braking);

(The nosewheel should be lowered onto the runway as soon as possible to increase weight-on-wheels and activate aircraft systems associated with the nose-landing-gear squat switches.)
- Asymmetric thrust (i.e., one engine above idle in forward thrust or one engine failing to go into reverse thrust);
- Brake unit inoperative (e.g., reported as a “cold brake” [i.e., a brake whose temperature is lower, by a specified amount, than the other brakes on the same landing gear]);
Spongy pedals (air in the hydraulic wheel-braking system);

- Anti-skid tachometer malfunction;
- Failure to adequately recover from loss of the normal braking system;
- Late selection of thrust reversers;
- No takeover or late takeover from autobrakes, when required;
- No switching or late switching from normal braking to alternate braking or to emergency braking in response to abnormal braking; or,
- Crosswind landing and incorrect braking technique.

Summary

The following can ensure optimum braking during the landing roll:

- Arm ground spoilers;
- Arm autobrakes with the most appropriate mode for prevailing conditions (short runway, low visibility, contaminated runway);
- Select thrust reversers as soon as appropriate with maximum reverse thrust (this increases safety on dry runways and wet runways, and is mandatory on runways contaminated by standing water, snow, slush or ice);
- Monitor and call “spoilers” extension;
- Be ready to take over from the autobrakes, if required;
- Monitor engine operation in reverse thrust (exhaust gas temperature [EGT], evidence of surge);
- Monitor airspeed indication (or fluctuations) and return engines to reverse idle at the published indicated airspeed;
- If required, use maximum pedal braking; and,
- As a general rule, do not stop braking until assured that the aircraft will stop within the remaining runway length.

The following FSF ALAR Briefing Notes provide information to supplement this discussion:

- **8.3 — Landing Distances**;
- **8.5 — Wet or Contaminated Runways**; and,
- **8.7 — Crosswind Landings**.

Figure 4

- Effect of Braking Devices on Stopping Energy and Stopping Distance

Note: Examples assume that airplane touches down at maximum landing weight and at landing reference speed (V_{REF}) on a dry runway at sea level and standard pressure and temperature.

Source: Flight Safety Foundation Approach-and-landing Accident Reduction (ALAR) Task Force
References

2. The Flight Safety Foundation Approach-and-landing Accident Reduction (ALAR) Task Force defines causal factor as “an event or item judged to be directly instrumental in the causal chain of events leading to the accident [or incident].” Each accident and incident in the study sample involved several causal factors.

Related Reading from FSF Publications

Regulatory Resources

Notice

The Flight Safety Foundation (FSF) Approach-and-landing Accident Reduction (ALAR) Task Force has produced this briefing note to help prevent ALAs, including those involving controlled flight into terrain. The briefing note is based on the task force’s data-driven conclusions and recommendations, as well as data from the U.S. Commercial Aviation Safety Team (CAST) Joint Safety Analysis Team (JSAT) and the European Joint Aviation Authorities Safety Strategy Initiative (JSSI).

The briefing note has been prepared primarily for operators and pilots of turbine-powered airplanes with underwing-mounted engines (but can be adapted for fuselage-mounted turbine engines, turboprop-powered aircraft and piston-powered aircraft) and with the following:

- Glass flight deck (i.e., an electronic flight instrument system with a primary flight display and a navigation display);
- Integrated autopilot, flight director and autothrottle systems;
- Flight management system;
- Automatic ground spoilers;
- Autobrakes;
- Thrust reversers;
- Manufacturers’/operators’ standard operating procedures; and,
- Two-person flight crew.

This briefing note is one of 34 briefing notes that comprise a fundamental part of the FSF ALAR Tool Kit, which includes a variety of other safety products that have been developed to help prevent ALAs.

This information is not intended to supersede operators’ or manufacturers’ policies, practices or requirements, and is not intended to supersede government regulations.

Copyright © 2000 Flight Safety Foundation

In the interest of aviation safety, this publication may be reproduced, in whole or in part, in all media, but may not be offered for sale or used commercially without the express written permission of Flight Safety Foundation’s director of publications. All uses must credit Flight Safety Foundation.