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Executive Summary

Many airlines analyse data downloaded from flight data recorders to determine how their aircraft
are being flown in order improve the safety of their flight operations. This process is known in
Europe as Flight Data Monitoring (FDM) and in the USA as Flight Operations Quality Assurance
(FOQA). Events occur when certain flight parameters exceed a predetermined threshold and,
after investigation, these events are usually stored in an event database. Some airlines such as
British Airways (BA) also record a selection of maximum or minimum parameter values (known
as measurements) on every flight and store these in a separate database. The purpose of this
Federal Aviation Administration sponsored proof-of-concept demonstration was to determine the
additional value of applying data mining tools to these FDM databases as compared to the
current analyses that airlines conduct.

The demonstration was performed on British Airways’ flight data event and measurement
databases for their Boeing 777-200 and 747-400 fleets. The event databases covered a period
of three years from June 2001 and each contained approximately 2,500 records, whilst the
measurement databases covered a two year period from June 2002 and each contained
approximately 40,000 records. The data mining tool used for the project had been produced by
Smiths Aerospace (Smiths) and contained learning algorithms such as Clustering, Decision
Trees and Association Rules that Smiths had specifically adapted and developed for aerospace
applications. Smiths carried out the data mining with input from BA, and the results were
analysed and interpreted by a joint review team.

The analysis conducted during this proof-of-concept demonstration delivered useful and
intriguing results. As was expected, the most significant findings were already known to BA,
which operates a very mature and comprehensive FDM program. These primary findings served
to validate the tool and provide confidence in its results. However, the data mining tool also
unearthed many interesting patterns and relationships at what could be called a “second level”
down which had not previously been detected using existing analysis techniques. If they had
been detected it is likely that they could have been dismissed as noise or random groupings.

The demonstration showed that data mining can provide new insights into patterns and
relationships within the databases of flight data events and measurements. Running preset
mining models on these databases on a regular basis would provide airlines with useful
additional safety management information. It should also improve the efficiency of the flight
data analysis process. Both Smiths and BA believe that the proof-of-concept demonstration
shows that data mining has a very useful role to play in Flight Data Monitoring, and will be a
valuable complement to existing analysis tools.
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Glossary of Terms

ASR
ATC

BA
BASIS
FAA
FDE
FDM (BA)
FDM
FOQA
GAIN
GPWS
GUI

OLE DB
PAPI
sQL

TCAS

Air Safety Report

Air Traffic Control

British Airways

British Airways Safety Information System
Federal Aviation Administration

Flight Data Exceedances

Flight Data Measurements

Flight Data Monitoring

Flight Operations Quality Assurance
Global Aviation Information Network
Ground Proximity Warning System
Graphical User Interface

Microsoft component data base specification
Precision Approach Path Indicator
Structured Query Language

Traffic Collision Avoidance System
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1 Introduction

One of the goals of the FAA Office of System Safety (ASY) is to identify and evaluate
methods and tools not previously applied to aviation safety data with the goal of
improving aviation safety industry-wide. One of the most interesting developments in
information management is the increasing use of “data mining” tools that can discover
hidden patterns and relationships in data without specific queries from a human expert.
Emphasis is placed on automated learning from data within large databases, although
subject matter expertise from a human is always needed to review the initial results
from a data mining project and to determine which of the patterns and relationships are
of real interest.

British Airways has many years of experience in the development and operation of an
effective airline Flight Data Monitoring (FDM) program. Smiths Aerospace has
developed a data mining tool that has successfully been applied to aircraft health
monitoring data, and also to flight data from rotorcraft operations in the North Sea in
Europe. Under a contract to RS Information Systems, Inc. Smiths Aerospace has
carried out a proof-of-concept demonstration on the application of data mining
algorithms to flight data from British Airways’ FDM program (see Reference [1],
Statement of Work).

The results of the proof-of-concept demonstration are presented in this report. Section
1 contains background information on the British Airways safety reporting and flight
data monitoring programs, and also on the Smiths Aerospace data mining tool and
algorithms used on this project. Section 2 describes the input data for the project and
its cleansing and transformation, whilst Section 3 presents an overview of the data
analysis performed. Section 4 represents the main body of the document and contains
a wide selection of example analysis results and findings. Section 5 gives British
Airways’ assessment of the results of the proof-of-concept demonstration. Summary
conclusions from the project are presented in Section 6 and recommendations on the
possible next steps are presented in Section 7.

1.1 Background — Safety Reporting and Flight Data Analysis in British Airways
There are two mainstream methods of safety event monitoring in British Airways:

(i)  Safety incident reporting, covering Air Safety Reports (ASR), Ground Occurrence
Reports, Cabin Safety Reports, Ground Handling Reports and Occupational
Safety Reports

(i) Flight Data Monitoring, covering Flight Data Events and Flight Data
Measurements

1.1.1 Safety Incident Reporting

Using Air Safety Reporting as an example, the typical process is as follows. British
Airways Flying Crew Orders define safety events that must be reported by the flight
crew. If an incident occurs the flight crew will fill in an ASR form which will be entered
into the British Airways Safety Information System (BASIS). The Air Safety department
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will investigate according to the seriousness of the event. Some event investigations
will require significant effort whilst other events will just be recorded in the database.
The BASIS tool helps manage single incident investigations and records the outcome
and corrective actions.

In addition to the investigation of an incident, the Air Safety department will classify all
Air Safety incidents using the BASIS Descriptor Classification System (see Reference
[2]). The classification system is based on Event Descriptors which describe a real or
potential safety occurrence. Event Types are a convenient way of grouping Event
Descriptors. Each Event Descriptor is unique and is found in the list of only one Event
Type. The classification system also captures the Immediate Effect of the incident on
the aircraft and what the Operational Effect was (if any). The purpose of the
classification system is to enable easy querying and analysis of the ASR database to
detect trends, anomalies unusual patterns etc. The BASIS software has well developed
functionality that facilitates this analysis. The classification system and the associated
software have been continually developed and improved over the past decade.
Significant thought and effort was applied to the classification system by experts from
the airline community in 2001 and 2002 in order to further enhance the system.
Because of the quality of the classification system and the analysis functionality of the
BASIS software, the British Airways Safety department has always believed that text
mining applied to a BASIS ASR database was unlikely to provide significant new
insight above what is already available using the current analysis tools.

1.1.2 Flight Data Monitoring

British Airways has a well developed Flight Data Monitoring system which measures or
monitors how aircraft in a fleet are being flown by the analysis of data taken from the
aircraft's Quick Access Recorder. Safety events such as high energy approaches or
deep landings are detected using sophisticated algorithms running in the event
detection program called FDT (Flight Data Traces). A Go-Around example event is
shown in Figure 1-1 below.
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Figure 1-1: Go-Around Event From FDT

The full list of the events that are monitored is presented in Appendix A. Validated
events are transferred to the Flight Data Exceedances (FDE) database. FDE has the
functionality to analyse events by aircraft type, event type, airfield, date, etc. and can
present the results in graphical formats selected as most appropriate for that particular
analysis. Example analysis outputs showing event frequency by Category and Location

are presented in Figures 1-2 and 1-3 below.
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Figure 1-3: Event Frequency by Location
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There is also an integrated risk analysis program that automatically assigns a "severity"
to all events using exceedance margins, permitting comprehensive analysis of events
by risk rather than frequency of occurrence. The severity index for glideslope deviation
is shown in Figure 1-4 below.

index
5

100
™ Height

08 gy (feet
G/S deviation (dots) - (feet)

i )

Figure 1-4: Severity Index for Glideslope Deviation

Analysis of the FDE database can be performed in many ways, for example event rate
per 1000 sectors, severity, location, pilot reference number etc. Obviously only the
pre-determined events listed in Appendix A are monitored and detected. Events
sharing the same Event Code are grouped together but no further classification of
events takes place in a manner similar to the BASIS ASR Descriptor system. Therefore
there is a greater opportunity for a data mining tool to provide new insights into the
safety events contained in the database.

Flight Data Measurements (FDM) is a different, but complementary, approach to the
analysis of flight data. Instead of only looking at exceedances or events, FDM analyses
the maximum or extreme value of many flight parameters on each and every flight. For
example, maximum ‘g’ force on landing, maximum rate of descent, maximum pitch on
landing etc. A full list of FDM parameters is presented in Appendix A.

FDM can calculate and display a parameter’s distribution over thousands of flights.
Two distributions on the same chart can easily be requested comparing, for example,
the same measurement parameter on another aircraft type, registration, station, date
range or against a standard normal distribution, as shown in Figure 1-5.
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Figure 1-5: Example of Normal Distribution Chart

The mean and standard deviation are automatically calculated for each distribution and
can also be plotted to illustrate the spread of the maximum values, as shown in Figure
1-6.
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Figure 1-6: Example of Standard Deviation Chart

However, in addition to the current analysis techniques, there is significant potential for
a data mining tool to detect unusual patterns and associations in the FDM database.

1.2 Objective of the Project

The primary objective of the proof-of-concept demonstration was to determine whether
data mining techniques can help improve airline or system safety by identifying
unknown risks, or providing an ability to monitor the effectiveness of operational
changes, that is currently not being achieved by the existing Flight Data Monitoring
system. In addition, the potential for the data mining tool to perform existing analysis in
a more effective manner and/or to provide regular management reports was

investigated.

The following factors were relevant in determining the specific safety analysis goals of

this project.

> Most of the intellectual effort in Flight Data Monitoring has gone into the event
detection algorithms in order to (a) improve event detection, (b) avoid the capture
of non-events, (c) define new events which may have previously proved
infeasible to detect (e.g. runway distance remaining) and (d) improve the display
of events (e.g. overlay of track on approach plates). A classification system
similar to that used in BASIS ASR has not been developed and thus the
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opportunity for data mining to produce meaningful new information is much
larger.

> Air Safety Reports are those defined in Flying Crew Orders plus any other event
or condition that the flight crew believe is unsafe. Flight data events can only
include those specified thus there is a greater potential to miss unsafe conditions.
The “you don’t know what you don’t know” syndrome.

» The FDM database of measurements is usually interrogated to find the answer to
a specific query e.g. “how does the distribution of landing distance at one airfield
compare to another”. The existing analysis tool can generate and display
distributions but cannot look for anomalies. There is significant potential for a
data mining tool to detect unusual patterns and associations in the FDM data
base.

> Aircraft operating procedures are changed for a number of reasons. Sometimes
the change is specific enough that it is relatively simple to monitor the
consequences using the existing flight data tools. However, a data mining
algorithm that was run regularly could detect adverse or favourable trends that
could be linked to changes in operating procedures, training etc.

The specific safety analysis goals established for the proof-of-concept demonstration
project were:

()  Analyse the Flight Data Exceedances (i.e. event) database to detect previously
unknown patterns or trends that could adversely affect flight safety.

(i)  Analyse the Flight Data Measurements database, looking for unusual
distributions or patterns that could identify areas of risk to the operation.

(i)  Analyse the data by aircraft registration and fleet to identify flight data recording
equipment or sensor problems.

(iv) Crosscheck the existing software; i.e. a comparison between fleets may indicate
that there are events going undetected in a fleet due to incorrect specification or
programming.

(v) Detect current known patterns as a validation of the effectiveness of the data
mining tool.

(vi) Determine if the data mining tool could provide the existing functionality in a more
effective manner than the current system.

The data mining demonstration was performed on FDE and FDM data from the British
Airways Boeing 777-200 and Boeing 747-400 aircraft fleets.

1.3 Overview of the Smiths Aerospace Data Mining Tool

The tool used on this program is a state-of-the-art data mining tool that has been
produced by Smiths Aerospace (Smiths). The tool contains algorithms found in many
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commercial data mining packages such as Clustering, Decision Trees, Association
Rules, etc. The philosophy behind the tool development is to take those algorithms
from the research community that are generally recognised as being ‘best in class’ and
adapt/extend them for aerospace applications. This requirement to provide ‘the best
solution for the application’ drove the need for Smiths to develop its own data mining
tool since the mix of algorithm capabilities being sought were not available in any single
commercial tool. As Smiths’ aerospace application domains are demanding and
present some novel challenges, it is imperative that the company has the ability to
adapt and develop the tool's capabilities.

Data mining tools need good interfaces to the data and the user. The data interface
must handle different data storage formats and facilitate the processing of large
volumes of data. The user interface must assist the analyst in managing the
construction of mining models® and the browsing of mining results. In the Smiths data
mining tool these interfaces are kept separate from the mining algorithms. This
separation is facilitated by the adoption of a data mining framework standard produced
by Microsoft in consultation with other data mining tool vendors. This standard is called
the ‘OLE DB for Data Mining Specification’. A query engine forms part of the data
mining framework. This engine processes data mining language extensions to SQL.
Within the framework a mining model is treated conceptually as a relational table. In
standard SQL there are commands to CREATE a table, INSERT INTO to populate a
table, and SELECT to browse the contents of a table. Treating a mining model as a
special type of table provides enormous flexibility. SQL type commands are used to
train mining models and to query their results or make predictions. These commands
provide the link between the data and mining algorithms, and also between user
requests and mining results. The real appeal of the data mining framework is that it
provides a generic specification for the way in which mining algorithms should interface
to the data and the types of query which mining results should support.

Smiths’ data mining tool is not designed to be an off-the-shelf commercial product for
general purpose use. Such products must appeal to a wide user base, and a large
amount of effort has to be placed into providing a generic user interface with
comprehensive data views, charts, menus and tips. Smiths see more value in
concentrating effort on algorithm capability and the data interface. Aerospace
application domains present specific challenges and Smiths’ focus is on providing
solutions to these challenges, utilising (i) its experience developing a range of
aerospace products, (i) its application knowledge and (iii) skills in artificial intelligence
and data mining. The emphasis for Smiths therefore is on extending the tool's core
algorithm capabilities to meet specific application requirements. A customer’'s
requirements can be satisfied either by a customised tool, or an analysis support
contract, or a combination of the two. The adoption of the ‘OLE DB for Data Mining
Specification’ facilitates this approach by enabling the Smiths data mining tool to
leverage third party products for the user interface. For example, the Smiths data
mining tool has been demonstrated through a range of interfaces: Microsoft's Analysis
Services, a Microsoft command driven query tool, Smiths specific interfaces for both
client machine and web services, and a tool add-in for Microsoft's Excel. Some
example GUIs are shown in Figure 1-7. This ability to interface to a wide range of GUIs

Y A mining model is the structure and collection of statistics learnt from the data. A model may be in the
form of a decision tree, or a collection of clusters, or a collection of rules, etc. Internally, the model is
stored as a table which offers flexibility for querying or when used to perform predictions.
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and databases means that the application specific capability provided by Smiths is
unrivalled by any single commercial data mining product.
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Figure 1-7: Example Data Mining Tool GUIs

1.3.1 Algorithms Used on This Program

The primary Smiths algorithms used for mining of the BA FDE and FDM data were
“Decision Tree”, “Cluster” and “Association Rules” learning algorithms. The three
algorithms provide complementary ‘views’ on the data and, by combining their outputs,
a clear picture of significant patterns or trends can be provided. All algorithms have
predictive capabilities.

Decision Trees have proved to be one of the most practical machine-learning
algorithms applied to real-world problems. The Decision Tree can be applied to
discrete or continuous data, and is a ‘supervised’ algorithm that derives decision
boundaries to partition data according to particular characteristics. For example it can
search for regions in the event or measurement data that characterise airport locations.
It learns to predict the values of a predictable attribute (or item of information, e.g. take-
off/landing location, pilot, event type) from a set of predictor attributes (i.e. other items
of information). The algorithm can learn to predict multiple attributes during a single
learning run. The learnt prediction model is represented as a tree with ‘nodes’ and
‘branches’, where a node denotes an attribute, and a branch an attribute value. A path
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in the tree represents a particular combination of attribute values (e.g., location = x and
pilot = y). All nodes along a path contain statistics representing the distribution of the
predicted values corresponding to the predictor values denoted by that path. A pruning
algorithm limits the size of the tree based on configurable input parameters. Figure 1-8
shows an example Decision Tree and the statistics of a selected node.

V//////////////////////////////////é
“
2| vEGsi000 <= - 7
17.095 z
Z
. | ENGYENM <= £.225 | T
' 12.165
VEGS1000 > -
: 17.095 ‘

EMGYEMNM = -12.165

LAaMDAIRPR

VEGS1000 = 11.175

VEGSE00 == 16.435

EMGTEMNM = 50,295 4

VEGSS00 > 16435 | ¢

Yalue Cases | Probability = | Yariance | Lift
IFK 265 I Gz 0c 0 12,2
SEZ & 211 % ] 17.9
LHR 5 1.75 % ] 0.0399
FSIA 5 1,05 % 0 5.56
LOS 1 0.35 % ] 0.281
IAD 1 0,35 % 0 0,267
BAH 1 0,35 % 0 0,197
MNRT 1 0,35 % u] 0,143
DioH 1 0.35 % ] 0.3586
LLwy 1 0.35 % ] 2.09

Figure 1-8: Decision Tree and Output Statistics of a Selected Node
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The Cluster algorithm is an ‘unsupervised’ algorithm that partitions data (e.qg. flight data
measurements) into a number of groups or clusters. The data items within a cluster
have more in common with other items in the same cluster than they do with items in
other clusters — items within a cluster are said to be similar. Clustering can therefore
reveal any natural structuring in the data. The cluster techniqgue models the statistical
distribution of the data using a maximum likelihood algorithm. The version implemented
by Smiths has many powerful features, for example an ability to indicate the optimum
number of clusters, and the availability of many parameters to control the complexity of
the model. Both continuous and discrete attributes can be input to the cluster algorithm.
Different types of predictions are supported by the algorithm, which adds significantly to
its capability for constructing statistical models. Figure 1-9 presents example Cluster
plots and the statistics of a selected cluster. The left hand display shows the cluster
locations and sizes (at one standard deviation), with the input data overlaid on the plot.
The right hand display shows a “heat map” to indicate the density of the data in the
different regions of the plot (lighter colour = higher density).

Value Cases Prabahility Yariance | Lift
FRPO 0.13058534 0.07 % a 26.4
SEZ 3.082372 157 % a 104
IFK 1066334 54.25 % 0 735
L 1124325 057 % 0 3 .44
MRT 5.316523 270 % ul 1.11
SFO 3.819193 1.94 % u} 0.862
ST 0.0123824 0.01 % u} 0.834
SEA 1.170479 0.60 %% a 0.815
R 2.053525 1.04 %% a 0.79
DEL 1.407165 0.72 % 1] 0.79

Figure 1-9: Cluster Plots and Output Statistics of a Selected Cluster
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The Association Rules algorithm detects significant associations between objects (e.g.
there is a high probability of ‘deep landing’ at location x). Associations are expressed
as conditional rules and a single rule can express the association between multiple
objects. A notion of significance is specified using a number of algorithm parameters.
The Association Rules algorithm was primarily applied to the event data, which is
discrete data, but it could also be applied to continuous (i.e. measurement) data. Figure
1-10 presents an example set of learnt association rules.

Rule Confiden Support Lift

events{24) exists -= events(d4D) exists 0.05882352 10 7.647058582
events(d4B) exists -= events{24) exists 006122448 3 0.70228091
events{d54) exists -= events(40C) exists 0.07317073 & 0.79268292
events(43) exists -= events(06H) exists 0.07920792 & 1,54455445
events{06H) exists -= events(43) exists n.0s g 1.54455445
events{S04) exists -= events(194) exists 0068280254 13 9.49733930
events{22H) exists -= events(d9) exists 0.085365585 14 1,10975609
events(49) exists -= events(22H) exists 009333333 14 1.10975609
events(40C) exists -> events(d3) exists 009444444 17 1.82343234
events(d4C) exists -= events(24) exists 011764705 2 1,34945095
events(44B) exists -= events(56A) exists 016326530 & 35.3741498

Figure 1-10: Association Rules Algorithm Outputs

All three learning algorithms generate similar statistics to indicate the significance of
patterns discovered in the data. The key statistics are:

> “Confidence” or “Probability”: This is the proportion of the data items contained
within a particular tree node or cluster that have a particular association (e.g. the
proportion for which the airport was JFK). For the Association Rules it is the
proportion of the first named data item for which a particular rule applies (e.g. the
proportion of event 24s that exist for which an event 44D also exists).

> “Support” or “Cases”: This is simply the number of data items contained within a
particular tree node or cluster that have a particular association (e.g. the number
of cases for which the airport was JFK). For the Association Rules it is the
number of data items for which a particular rule applies (e.g. event 24 exists and
event 44D exists).

» “Lift": This is a normalised measure of the significance of an identified pattern in
the data. It is a ratio between the observed number of data items contained within
a particular tree node or cluster, or for which a particular rule applies, that have a
particular association (e.g. the number of cases of event 21B for which the airport
was JFK) to the expected number given a random distribution of the data item
associations (e.g. assuming that the rate of event 21B occurrences at JFK should
be in proportion to the rate of occurrence of all events at JFK). Two normalisation
methods were used for an analysis of events occurring at different airport
locations, the first based on the rate of occurrence of all events at the different
locations, and the second based on the number of sectors flown to those
locations (identified from the number of flight data measurement records). A lift
value of 1 means that the observed number of data items exactly matches the
expected number assuming a random distribution of the data. A lift value of less
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than 1 means that there are less data items than expected, and a value of greater
than 1 means that there are more items than expected. For this analysis, lift
values of greater than 2 were considered to be significant in terms of the
identification of abnormally high concentrations of data items.
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2 Preparation of Data and Tool

2.1 Description of Input Data

Two BA long haul fleets were analysed in the data mining demonstration; the Boeing
777-200 (777) fleet and the Boeing 747-400 (744) fleet. Two data sets were acquired
for each fleet, the first set from BA’'s FDE database of events and the second from the
FDM database of measurements. For both fleets the FDE data covered the period from
June 2001 to June 2004 and the FDM data covered the period from June 2002 to June
2004. The FDM database is much larger than the FDE database because a
measurement record is generated for every flight, whereas events are only detected on
a small percentage of flights (typically less than five percent).

The Boeing 777-200 data comprised 2,169 event records (from FDE) and 40,813
measurement records (from FDM). The Boeing 747-400 data comprised 2,550 event
records and 39,709 measurement records. Each event record contained 24 data items
and each measurement record contained 87 different parameters.

All the FDE event codes and their descriptions are listed in Table Al in the Appendix.
The FDM measurement hames and descriptions are listed in Tables A1l and A2, with
Table Al containing those measurements that can be directly related to a particular
event code.

In addition to the event parameters, the event records contained the following
documentary data fields which were used during the analysis:

Aircraft Registration

Departure Airfield

Landing Airfield

Crew codes for Captain and Co-pilot (de-identified)

Severity measure for the event

Flight phase (take-off, climb, cruise, descent, approach, go-around, and landing)
ASR flag (whether or not an Air Safety Report was raised)

Date

YV VV V V V V V

In addition to the measurement parameters, the measurement records contained the
following documentary data fields which were used during the analysis:

Aircraft Registration

Departure Airfield

Landing Airfield

Landing Runway

Date

Aircraft Weight at take-off and landing

YV V.V V V V

To prevent the identification of individual flights, for this project BA translated the dates
in both the event and measurement records to the first day of the month. Therefore it
was only possible to identify the month and year on which a record was generated, and
not the day.
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2.2 Data Capture, Cleansing and Transformation

The event and measurement data were supplied as “comma separated variable” files
(CSV format). Since, in data mining terms, the volume of the data was relatively small,
and the duration of this program was short, it was determined that the data cleansing
and transformation would prove more efficient if the data was stored in Microsoft Excel.
Excel is a convenient tool for data exploration, which involves searching for
unbelievable values, potential outliers, correlations between measured parameters,
missing values, etc. At a late stage in the analysis, the data was imported into
Microsoft's SQL Server using Data Transformation Services. Excel was still used as a
convenient interface for executing the data mining analysis but the data was retrieved
directly from the database using SQL queries formatted from within Excel. The use of
SQL Server would normally be the preferred option when performing data mining since
it provides a high level of data security, facilitates complex data queries, and assists in
providing a record of the analysis.

Overall, the integrity of the FDE data was good. There were some missing crew codes
and upon inspection of the mining analysis results it became clear that the raising of
ASRs was not always recorded in the database. As a result of this study the link
between the ASR and FDE databases has been automated to improve the matching of
records. There was no transformation of the FDE data other than the extraction of two
additional parameters for ‘date-month’ and ‘date-year’.

The integrity of the FDM data was also good. Some records had one or more missing
measurements that had been given an out-of-range code. For some parameters there
was a lot of missing data due to the fact that these measurements were introduced
after June 2002. Many of the measurement parameters are associated with particular
flight phases and there is little relationship between parameters calculated in different
flight phases. Therefore each analysis performed concentrated on different subsets of
parameters. For this reason there was no generic cleanup of the FDM data. Instead,
the cleanup was performed online during each analysis. This cleanup included
removing records for which the relevant measurements were not available. Histograms
for individual measurement parameters were produced as part of the data integrity
checking process. These histograms often suggested that the measurement results
could contain some noisy data (i.e. data at the extreme tails of a distribution). A
decision was made to keep the ‘suspected noise data’ in the analysis to determine its
nature and to identity it as either ‘true’ noise or ‘patterns of interest'.

Additional parameters for ‘date-month’ and ‘date-year’ were extracted for each record
in the FDM data. At a late stage in the analysis it was suggested that, in addition to
searching for associations with landing location, identifying associations with a
particular runway could provide useful additional information. There is no explicit
recording of the runway used for landing in the FDM data, but it is possible to derive
this given the landing airport and aircraft heading at touch down. Each flight was
tagged with a string composed from the landing location and touch down heading. This
heading could not be used directly since for a given location and runway it could vary
by several degrees. Instead a simple rounding formula was applied on the assumption
that this was sufficient to correctly associate most flights with runway usage.
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3 Overview of the analysis Performed

This project was a short duration proof of concept demonstration of the application of
data mining techniques to airline flight data. Owing to the time constraints the analysis
performed had to be of limited scope. It is important to stress that the objective was to
perform example analyses to demonstrate the concept and potential benefits of data
mining, rather than perform an exhaustive analysis of BA's 777 and 744 event and
measurement data.

Smiths and BA had two review meetings during the analysis process. The project was
an investigative exercise for both parties, with BA learning about the capabilities of the
data mining algorithms, and Smiths increasing its knowledge of the information
provided by the flight data events and measurements. There is clearly a need for future
work to build on the experience gained from the exercise in order to produce an
operational data mining capability. Recommendations on the next steps towards the
development of such a capability are presented in Section 7.

In general terms, the focus of the analysis effort was to mine the event and
measurement records to search for hidden patterns in the data, and associations with
the documentary data fields listed in Section 2.1. In addition the following items were
specifically examined:

» The association of events and measurements with take-off and landing location
and runway.

» The association of events with crew codes. These codes are not currently
included in the measurement records.

» The association of events with aircraft registration.
> Detecting date-related patterns and adverse trends.

> The level of voluntary safety reporting (i.e. the raising of ASRs), and therefore
associations between events and ASRs.

The analysis of the event data included searches for all of the above associations. The
measurement data should give a richer picture of operational variations than the
events, and enable abnormalities to be highlighted even where no events are being
generated. However, with less documentary data fields, the measurement analysis was
limited to searching for associations with location/runway and date.

Although the event and measurement analyses were performed separately, where
relevant the findings from these analyses were correlated to provide the most complete
picture of operational risks. In addition, the measurement data was assessed to
determine what additional information this could provide on specific associations, and
whether there was evidence to suggest that any event limits should be changed.

In addition to the general focus of the analysis described above, some analysis effort
was directed to answering specific questions raised at the BA/Smiths review meetings.
Examples of such questions are; Is there any association between high energy or
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unstable approaches and poor landings? Are there any significant patterns contained in
the tails of measurement distributions?

All three learning algorithms described in Section 1.3.1 (Decision Trees, Clustering and
Association Rules) were applied to the event and measurement data. Where relevant,
the different algorithm outputs were compared to identify the extent to which these
identified common patterns, or whether a pattern was more clearly detected by one
particular algorithm.

The event records (from the FDE database) were originally analysed in isolation. As
the FDE data only contained records of flights on which one or more events occurred,
and did not include flights on which there had been no event, all results were
conditioned on the basis of the events that had occurred, and not the occurrence rate
of events in terms of the number of sectors flown. For example, the analysis could
identify an abnormal number of occurrences of event E at location L in terms of all the
events generated at that location, but not whether the occurrence rate of event E was
abnormal in terms of the number of sectors flown to location L.

At the request of BA, Smiths subsequently performed some additional analysis, linking
the event and measurement records from the FDE and FDM databases to enable
results to be conditioned on the basis of the number of sectors flown to different
locations. The findings from these two approaches to result conditioning were then
compared. The linking of the event and measurement records was hampered by the
de-identification of the two data sets, (i.e. with dates only identified as months and
years), so that it was not possible to directly link event and measurement records
generated on the same flight. It is recommended that future data mining is performed
with identified data, or if de-identified, data linked with an added unique key field.
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4 Example results and findings

This section presents example results and findings from mining of the event and
measurement databases. The event analysis results are presented first, and are
categorised according to the types of association found in the data.

Data mining tools are normally used to build predictive models. Therefore models of
interest are usually restricted to those that reveal patterns with high values of support.
When examining results the reader should keep in mind that the data mining tool is
being used as an intelligent query tool to highlight patterns of interest and not for
building reliable predictive models. It is therefore valid to have patterns of interest with
low values of support.

4.1 Flight Data Events
4.1.1 Date-Related Trends

4.1.1.1 Changes to Analysis Configuration and Routes Operated

A Decision Tree mining model identified date related trends in the rate of occurrence of
events that were due to changes in the flight data analysis program. For example, the
mining highlighted that event 40C (abnormal configuration, speedbrake with flap)
ceased occurring on the 777 fleet in January 2003. On the 777 use of speedbrake with
flap is allowed, therefore BA had discontinued the event on this fleet at that time.

The Decision Tree shown in Figure 4-1 has identified the date of January 2003 as
being the most significant in terms of changes in the occurrence of events in the
approach phase. There were a large number of 40C events before that date, but none
after, and the event has a strong association with the node representing the period
before that date, with a lift value of 5.5. Some new events such as 06H (high energy at
8nm) were also introduced at the same time, and Event 06H has a strong association
with the node representing the period after that date, with a lift value of 6.8.
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Figure 4-1: Decision Tree Identifying Date-Related Changes in Event Occurrences

The mining of the flight data measurements also identified some date-related trends
that were associated with changes in the routes flown by the fleet types (see Section
4.2.1). Both these examples illustrate the fact that the mining is being performed on a
dynamic data set, subject to changes as a result of changes to the flight data analysis
being performed, and the routes being flown.

These changes tended to mask the identification of trends which may be of interest for
flight safety. Cleaning could be performed to remove data affected by known changes
prior to mining, but this would be a relatively time consuming task. The dynamic nature
of the data suggests that there should be a limit to the period over which historical data
is included in any mining process. For the initial mining of the event data a three year
period was used. For the additional analysis (see Section 4.1.4) this was limited to a
two year period.
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Weather Related Events in October 2002

In a cluster model of 777 event data, the most significant features of one cluster were
the presence of 44D events (GPWS windshear warning) with a lift of 24.0, and the
dominance of the month of October 2002 with a lift of 18.7. Statistics for cluster 10 are
presented in Figure 4-2. A GPWS warning should result in a go-around, so there is an
association between events 44D and 24 (go-around from below 1000ft). A subsequent
query of the event database confirmed that 11 of the 18 44D events on the 777 had
occurred in the month of October 2002, and that the 11 events all occurred at the
London airports of STN (Stansted), LHR (Heathrow) and LGW (Gatwick). The data
mining is highlighting the effects of bad weather in the UK during the month of October
2002.
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Figure 4-2: Single Cluster Event and Date Statistics

smtths 21

&l



41.1.3

Application of Smiths Aerospace Data Mining Algorithms to British Airways FDM Data

Apparent Change in the Raising of ASRs

Through a link between BA’s FDE and BASIS ASR (Air Safety Report) databases, the
events database is updated to include a record of whether or not an ASR was raised
for each event. The Cluster and Decision Tree analysis identified an apparent large
drop in the raising of ASRs on both the 777 and 747 fleets around the period of June to
December 2003. This was confirmed by a subsequent query of the event database.
Figure 4-3 shows the monthly percentage of event 24s (Go-Around) that have an
associated ASR record on the 744 fleet. All Go-Arounds should trigger the raising of an
ASR, however it can be seen that there is almost a complete absence of ASRs
between June 2003 and January 2004.

There was in fact no drop off in aircrew’s raising of ASRs, and the missing ASR records
in the FDE database were actually due to a temporary problem with linking of the ASR
and FDE databases at the time BA introduced a new incident reporting system called
eBASIS. Therefore the data mining is identifying a system problem, and not a reporting
problem.

744: Percentage of Event 24s with associated ASR
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Figure 4-3: ASR Records for Event 24

British Airways was aware of the three issues highlighted above. However they do
show that the mining tool is correctly identifying anomalies and thereby verify the
accuracy of the tool and provide confidence in other reported results.
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4.1.2 Associations Between Events, and Events and ASRs

4.1.2.1 Event Associations

Tables 4-1 and 4-2 present outputs from the Association Rules algorithm, highlighting
the most significant associations between events on the 777 and 744 fleets
respectively.

Table 4-1: Significant Event Associations on 777 Fleet

Events Confidence Support Lift
48B — 44B 0.31 13 12.3
19A — 50A 0.76 13 9.49

44D —> 24 0.67 10 7.65
08A — 08B 0.27 33 6.52

The following comments can be made on the 777 event associations:

1

The following comments can be made on the 744 event associations:

1

48B (reduced flap landing) — 44B (GPWS soft warning): This is a natural
consequence of the GPWS requirement to generate a soft warning (“too low
flaps™) if Land Flap is not selected by final approach.

19A (long flare) — 50A (deep landing): There is a natural physical relationship
between these events, in that a long flare will often result in a deep landing.

44D (GPWS windshear warning) — 24 (Go-Around from below 1000ft): BA Flying
Crew Orders require that a Go-Around should be flown following a GPWS
windshear warning on approach unless previously briefed in accordance with
Flying Crew Orders. Identifying negative associations between events, for
example where a 44D event does not have an associated 24 event, would be a
useful addition to the analysis capability and should be included in any
implementation.

08A (climb out speed high below 400ft) - 08B (climb out speed high 400 to
1,000ft): This association shows that, in approximately one third of the
occurrences of a high climb out speed in the first phase of flight, this has still not
been corrected by the second phase. Many of these cases were related to take-
offs at low gross weight.

Table 4-2: Significant Event Associations on 744 Fleet

Events Confidence Support Lift
06J — 06K 0.833 5 74.84
56A — 44B 0.83 19 111
19A — 50A 0.9 28 3.83

06J (high energy at 1,000ft) — 06K (high energy at 500ft): This shows that crews
are unable to reduce excess speed as often as would be desired. What is
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interesting is that this correlation does not show up on the 777 fleet. This is
probably due to differences in the way the final approach is flown. On the 777 the
auto throttle is engaged to touchdown, whereas on the 744 when the auto pilot is
disengaged the auto throttle is also disengaged. Therefore the events may be
due to the greater degree of manual throttle control during the final approach on
the 744.

2 56A (deviation under glideslope) — 44B (GPWS soft warning): The GPWS is
programmed to warn crew if they deviate significantly below the glideslope

4.1.2.2 Associations Between Events and ASRs

Tables 4-3 and 4-4 present outputs highlighting the most significant associations
between events and ASRs on the 777 and 744 fleets respectively.

Table 4-3: Associations Between Events and ASRs on 777 Fleet

Events Confidence Support Lift
44D —- ASR=R 0.67 12 4.82
24 > ASR=R 0.68 110 4.65
02A - ASR=R 0.53 10 3.81
49 - ASR =R 0.47 70 3.37
44C - ASR =R 0.43 9 3.1
23B > ASR=R 0.38 5 2.78
48B - ASR =R 0.36 15 2.58
46A — ASR=R 0.33 4 2.41
24A —> ASR=R 0.31 15 2.21

Table 4-4: Associations Between Events and ASRs on 744 Fleet

Events Confidence Support Lift
24 > ASR=R 0.6 224 3.65
46A > ASR=R 0.49 40 2.99
24A > ASR=R 0.47 27 2.87
49 > ASR=R 0.4 44 242
23C > ASR=R 0.34 21 2.1
44D - ASR=R 0.33 3 2.02

The percentages of events with ASRs raised (as shown by the confidence statistic)
indicated in the above tables will have been affected by the problems of capturing the
ASR information in the FDE database that were discussed in Section 4.1.1.3. However,
this analysis should be useful in reinforcing to flight crew the requirement to report
certain events as ASRs. The crew will have been aware of all of the above events
except possibly 23C (high normal acceleration on landing) and all should be reported.
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4.1.3 Associations Between Events and Specific Aircraft and Crews

Table 4-5 shows significant associations between events and de-identified crew codes
on the 744 fleet. Only one significant association was found, and this was that two crew
were responsible for 13% of all the 09A events (high pitch rate on take-off) occurring on
the 744 fleet. This information will be fed into the BA pilot events studies.

Table 4-5: Associations Between Events and Crew on 744 Fleet

Events & Crew Confidence Support Lift
CODE = 09A — 20161 0.06 6 3.16
CODE = 09A — 61481 0.07 7 3.16

Table 4-6 shows significant associations between events and aircraft registrations on
the 777 fleet. It can be seen that 14% of all the 23A events (high normal acceleration
on ground) and 23D events (firm nose wheel touchdown) occurred on aircraft GVIIC.
This information has been passed to BA engineering.

Table 4-6: Associations Between Events and Aircraft Registration on 777 Fleet

Events & A/C Reg Confidence Support Lift
CODE = 23D - GVIIC 0.14 6 3.22
CODE = 23A - GVIIC 0.14 12 3.1

4.1.4 Associations Between Events and Airport Locations

41.4.1

This is the most interesting result category, as factors associated with different airport
locations cause the greatest operational variability and, as these are usually outside an
airline’s control, they are the most difficult for a single airline to address.

Results are presented separately for the 777 and 744 fleets, and also for the flight
phases of (i) approach and landing, and (ii) take-off and climb. Two sets of results from
the Association Rules algorithm are presented for each combination of fleet type and
flight phase. As explained in Section 3, in the initial analysis lift values were normalised
according to the rate of occurrence of events at different locations. These results are
presented second. Additional analysis was then performed, linking the event and
measurement data to enable lift values to be normalised according to the number of
sectors flown to different locations. These results are presented first. All results are
sorted according to the magnitude of the lift value.

777 — Landing

Tables 4-7 and 4-8 present Association Rules outputs for events occurring on the 777
fleet in the flight phases of approach (A), landing (L) and Go-Around (G).

smtths

25

_ @f' ‘



Application of Smiths Aerospace Data Mining Algorithms to British Airways FDM Data

Table 4-7: 777 Landing Events, Lift Calculation Based on Number of Sectors Flown

Flight Phase=A, L, G Confidence Support Lift
CODE =56B - TO =JED 0.21 6 38.04
CODE =56B —» TO = ABV 0.17 5 19.77
CODE =23A —» TO = BDA 0.12 6 17.06
CODE = 45A — TO = GRU 0.38 5 14.52
CODE =43 —» TO = DFW 0.10 7 7.36
CODE = 06H — TO = DFW 0.08 6 6.14
CODE =48B - TO=0RD 0.21 6 6.06
CODE = 06H — TO = PHX 0.07 5 5.62
CODE =50A - TO =DXB 0.13 11 5.47
CODE = 06H —» TO = MCO 0.07 5 4.70
CODE =40C -» TO=GRU 0.12 10 4.49
CODE =23C —» TO = DEN 0.06 5 4.35
CODE =50A — TO = AUH 0.09 8 3.54
CODE = 06H — TO = BOS 0.08 6 3.29
CODE=43 > TO=1AH 0.08 6 3.22
CODE = 06H —» TO = ORD 0.11 8 3.17
CODE =23C —» TO = I1AH 0.08 7 3.15
CODE =23A - TO=EWR 0.10 5 3.00
CODE =23C —» TO=0RD 0.08 7 2.38
CODE =43 - TO =ORD 0.07 5 2.03
CODE =40C, CODE =43 > TO=LHR 0.63 5 2.03

Table 4-8: 777 Landing Events, Lift Calculation Based on Number of Events

Flight Phase = A, L, G Confidence Support Lift
CODE =56B —» TO = JED 0.21 6 15.86
CODE =23A — TO = BDA 0.12 6 10.12
CODE =45A - TO=GRU 0.38 5 9.01
CODE =56B —» TO = ABV 0.17 5 8.07
CODE =50A » TO = AUH 0.09 8 5.29
CODE =50A - TO =DXB 0.13 11 4.96
CODE =40C - TO =SAN 0.08 7 4.84
CODE =48B — TO = ORD 0.21 6 4.15
CODE = 06H — TO = PHX 0.07 5 3.75
CODE =43 —» TO = DFW 0.10 7 3.67
CODE =06H —» TO = DFW 0.08 6 3.07
CODE =40C - TO = GRU 0.11 10 2.69
CODE =06H —» TO = MCO 0.07 5 2.44
CODE =23A > TO=EWR 0.10 5 2.34
CODE =06H > TO=0ORD 0.11 8 2.14
CODE =06H —» TO =B0OS 0.08 6 2.11
CODE=43—>TO=I1AH 0.08 6 2.04
CODE =23C —» TO = IAH 0.08 7 2.02
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A number of the items in the above tables support what is already known about certain
airports. A few examples are given below.

When the sectors information is used in the lift calculation, the two highest lift values
are for 56B (deviation above glideslope) events at JED (Jeddah) and ABV (Abuja). The
prominence of these two locations in the occurrence of 56B events is confirmed by a
specific query of BA’s FDE database (Figure 4-4). There are known issues at JED with
alignment of the PAPIs and glideslope, and also with the visual aspects of the final
approach to ABV.
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Figure 4-4: FDE Database Query for Event 56B

All the 6H events (high energy at 8nm) are into USA airfields [e.g. PHX (Phoenix),
MCO (Orlando), DFW (Dallas) and BOS (Boston)] and are due to ATC procedures. The
high rate of occurrence of 50A events (deep landing) at DXB (Dubai) and AUH (Abu
Dhabi) is expected as the airports have long runways and are on training routes. The
48B (reduced flap landing) events at ORD (Chicago) and other busy airfields are as a
result of the aircraft QRH checklist actions. In the event of extended holding at these
airfields a “low fuel” warning can be received and the QRH action is to make a flap20
landing instead of the normal flap30. The 23C events (high normal acceleration at
touchdown) at DEN (Denver) are probably caused by the high altitude of the airport.

4.1.4.2 777 — Take-Off

Tables 4-9 and 4-10 present Association Rules outputs for events occurring on the 777
fleet in the take-off (T) and climb (C) phases.
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Table 4-9: 777 Take-Off Events, Lift Calculation Based on Number of Sectors Flown

Flight Phase =T,C Confidence Support Lift
CODE =08A > FROM =LTN 0.08 7 241.50
CODE =49 -» FROM = EWR 0.32 7 9.51
CODE = 08D — FROM = ORD 0.19 6 5.77
CODE = 08A —» FROM = ORD 0.10 9 2.95
CODE = 08A —» FROM = BOS 0.07 6 2.75

Table 4-10: 777 Take-Off Events, Lift Calculation Based on Number of Events

Flight Phase =T,C Confidence Support Lift
CODE =49 —» FROM = EWR 0.32 7 412
CODE =23A —» FROM = LHR 0.63 5 2.85
CODE = 08D — FROM = ORD 0.19 6 2.38

Again, some of the items in the table are expected, for example the prominence of
event 49 (TCAS resolution advisory) at EWR (New York Newark) is due to the very
busy airspace.

Other items were unexpected, such as event 08A (climb out speed high below 400ft) at
LTN (Luton), however this is confirmed by the result of a specific query of BA's FDE
database shown below (Figure 4-5). The item does not appear in the second table, and
is only prominent in the first owing to the small number of sectors flown to/from LTN.
These events are caused by low gross weight take-offs subsequent to diversions to
Luton.
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Figure 4-5: FDE Database Query for Event 08A
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Conversely an item in the second table, 23A events (high normal acceleration on
ground) at LHR (London Heathrow) does not appear in the first table. All the events
occurred in May/June 02 and were caused by the runway resurfacing program at LHR.

4.1.4.3 744 — Landing

Tables 4-11 and 4-12 present Association Rules outputs for events occurring on the
744 fleet in the flight phases of approach, landing and Go-Around.

Table 4-11: 744 Landing Events, Lift Calculation Based on Number of Sectors Flown

Flight Phase =A, L, G Confidence Support Lift
CODE =58B > TO =SYD 0.50 4 21.14
CODE =21B »> TO =JFK 1.00 6 13.56
CODE =06H —» TO = SFO 0.30 25 13.20
CODE =42 - TO = JFK 0.89 8 12.05
CODE = 06H —» TO = MIA 0.23 19 8.17
CODE =56B —» TO = SFO 0.16 16 6.96
CODE = 19A, CODE =50A - TO =SIN 0.23 6 5.06
CODE =56B > TO =SYD 0.12 12 4.98
CODE =19A » TO =SIN 0.21 6 4.70
CODE =56B —» TO = HKG 0.11 11 4.59
CODE = 06K —» TO = JFK 0.33 6 4.52
CODE =24 > TO=MIA 0.11 21 3.97
CODE =42B —» TO = JFK 0.29 4 3.87
CODE =56B —» TO = MIA 0.09 9 3.19
CODE =50A —» TO = BKK 0.07 20 2.65
CODE =44B —» TO =JNB 0.07 6 2.57
CODE =50A —» TO = HKG 0.06 16 2.47
CODE =24 - TO =SFO 0.05 10 2.32
CODE =50A > TO =JNB 0.06 16 2.28
CODE =24 -» TO = JFK 0.17 32 2.27
CODE =06H —» TO = LAX 0.06 5 2.24
CODE =44B —» TO = NRT 0.05 5 2.24
CODE =24A - TO =JFK 0.15 5 2.05

Table 4-12: 744 Landing Events, Lift Calculation Based on Number of Events

Flight Phase = A, L, G Confidence Support Lift
CODE =58B —» TO =SYD 0.50 4 17.06
CODE =21B —» TO = JFK 1.00 6 8.97
CODE =42 —» TO = JFK 0.89 8 7.97
CODE =19A - TO=SIN 0.21 6 6.30
CODE =06H —» TO = SFO 0.30 25 4.09
CODE =56B - TO=SYD 0.12 12 3.98
CODE =06H > TO=MIA 0.23 19 3.15
CODE =56B — TO = HKG 0.11 11 3.05
CODE = 06K —» TO = JFK 0.33 6 2.99
CODE = 06H — TO = LAX 0.06 5 2.62
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CODE =42B » TO = JFK 0.29 4 2.56
CODE =50A -> TO=SIN 0.08 22 2.28
CODE =44B - TO = NRT 0.05 5 2.23
CODE =56B —» TO = SFO 0.16 16 2.13
CODE =50A —» TO = BKK 0.07 20 2.13
CODE=27A > TO=LHR 0.50 5 2.00

Tables 4-11 and 4-12 highlight issues with JFK (New York John F Kennedy) airport.
These become even clearer when all three years of event data are included, and the
analysis is limited to the approach phase. This produces the results shown in Table 4-
13. For these results the lift value is calculated using event rates.

Table 4-13: 744 Events in Approach Phase (3 Years of Data)

Rule Confidence Support Lift
CODE =21B —» TO = JFK 1.00 12 8.19
CODE =42 »>TO =JFK 0.90 9 7.37
CODE =03M —» TO =LHR 0.80 4 5.28
CODE=40C > TO=LHR 0.40 6 2.64
CODE=27A > TO=LHR 0.38 5 2.54
CODE = 06H —» TO = SFO 0.29 27 2.24
CODE =49 - TO =SFO 0.29 4 2.23

All 12 of the 21B events (excessive bank angle 100ft to 500ft) occurred at JFK.
Furthermore 90% (9) of event code 42 events (low on approach) also occurred at JFK.
Both events are highlighting issues with the Canarsie approach, shown in Figure 4-6.
The abnormality of this approach is also clearly illustrated in the results of the
measurement data analysis presented in Section 4.2.2.2.

The Carnarsie approach is designed to avoid overflying residential areas close to JFK
and mitigate the effect of aircraft noise in these areas. It requires a sharp right turn late
in the approach. The low on approach events are possibly caused by the requirement
to obtain visual reference.
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Figure 4-6: Canarsie Approach
Table 4-11 also highlights the high rate of occurrence of 06H events (high energy at

8nm) at SFO (San Francisco) and MIA (Miami). This is not unexpected as ATC keep
aircraft high on the approach and both airports are known for rushed approaches.

4.1.4.4 744 — Take-Off

Tables 4-14 and 4-15 present Association Rules outputs for events occurring on the
744 fleet in the take-off phase.

Table 4-14: 744 Take-Off Events, Lift Calculation Based on Number of Sectors Flown

Flight Phase = T,C Confidence Support Lift
CODE =23A —» FROM = MAA 0.50 6 137.88
CODE =49 —» FROM = PHL 0.22 5 19.49
CODE = 10D - FROM = NRT 0.26 8 10.87
CODE = 10D - FROM = NBO 0.13 4 7.57
CODE = 08D —» FROM = SFO 0.14 7 6.72
CODE = 10D —» FROM = JNB 0.13 4 5.24
CODE = 08D —» FROM = JFK 0.18 9 2.54
CODE =49 —» FROM = JFK 0.17 4 2.41
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Table 4-15: 744 Take-Off Events, Lift Calculation Based on Number of Events

Flight Phase =T,C Confidence Support Lift
CODE = 23A » FROM = MAA 0.50 6 17.21
CODE = 10D - FROM = NBO 0.13 4 6.22
CODE =49 - FROM = PHL 0.22 5 5.24
CODE = 10D —» FROM = NRT 0.26 8 3.89
CODE = 08D —» FROM = JFK 0.18 9 2.46
CODE = 08D —» FROM = SFO 0.14 7 2.46
CODE =49 —» FROM = JFK 0.17 4 2.33
CODE = 10D —» FROM = JNB 0.13 4 2.22
CODE = 46A —» FROM = LHR 0.64 9 2.09

At the top of Tables 4-14 and 4-15 is the occurrence of 23A events (high normal

acceleration on ground) at MAA (Madras), which is due to the condition of the runway.

It is noted that all the significant associations for event 49 (TCAS resolution advisory)
are with airports in the USA. These are PHL (Philadelphia), SFO and JFK for the 744

fleet, and EWR for the 777 fleet. Again, this is related to the busy airspace.

4.2 Flight Data Measurements

42.1 Date-Related Trends

As discussed in Section 4.1.1, data mining can detect date related trends caused by
changes in the analysis and routes flown. Two examples are described below.

A histogram of the MAXRODB2000 measurement (maximum rate of descent below
2000ft) on the 744 fleet is shown in Figure 4-7. It can be seen that the parameter has a

double distribution.
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Figure 4-7: Histogram of Max Rate Of Descent Below 2000ft on 744 Fleet
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Figure 4-8 presents a simple cluster model for this measurement, with cluster 1
representing the major data distribution and cluster 2 the minor distribution. Cluster 2 is
strongly associated with the year 2004 (with a high lift of 4.5), but not with the previous
years, indicating a date related change. The reason for the change is that the
measurement was originally being incorrectly calculated, and the problem had been
identified and corrected.
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Figure 4-8: Simple Cluster Model of Max Rate Of Descent Below 2000ft on 744 Fleet

A second example relates to a Cluster model produced for the two climbout
measurements of MNCLS35400 (minimum climb speed 35ft to 400 ft) and
MIN4001500 (minimum climb speed 400ft to 1500 ft). Model outputs are shown in
Figure 4-9. Cluster 9 contains the highest values of both measurements, and
information on this cluster is shown on the lower left of the figure. The location
information shows that two locations with very strong associations with cluster 9 are
DOH (Doha) and BAH (Bahrain), with lifts of 72 and 11 respectively. The date
information shows a strong increase in membership of this cluster in 2003 and 2004.
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Figure 4-9: Cluster Model of Climb Out Speed Measurements on 744 Fleet

A Naive Bayes model was produced to provide statistical information about the
different airport locations. In Figure 4-10 the location of DOH has been selected and
the date related information shows that the 744 began operating there in mid 2003 (the
same was true for BAH). Therefore the date related trend associated with high climbout
speeds (captured by cluster 9) was due to the start of operations on a new route.

The explanation for the high climb out speeds at DOH and BAH is that aircraft shuttle
between these two locations, and therefore a considerable number of the take-offs are
made at low gross weights.
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Figure 4-10: Naive Bayes Model Showing Airport Locations
4.2.2 Trends with Airport Locations

4.2.2.1 777 - Landing

A Cluster model was produced for 777 approach energy measurements of VEGS500
(energy minus Vref at 500ft) and VEGS1000 (energy minus Vref at 1000ft) (Figure 4-
11). There is a relatively strong correlation between the two measurements, and cluster
8 captures the highest values of both measurements. The location information on the
lower left of Figure 4-11 shows that this cluster has a strong association with SAN (San
Diego), with a lift value of 9.9. A total of 187 of the 315 flights into SAN are associated
with this cluster.
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Figure 4-11: Cluster Model of Approach Energy Measurements on 777 Fleet
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The left hand heat map in Figure 4-12 shows where the majority of the data is located
and the right hand heat map shows the regions in which energy measurements would
be assigned to cluster 8. This confirms the issue of rushed approaches into SAN.
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Figure 4-12: Heat Maps for all Data (left) and for Cluster 8 Only (Right)

Additional Cluster and Decision Tree models were produced to include another
approach energy measurement, ENGY8NM (energy minus Vref at 8 nm). The Decision
Tree presented in Figure 4-13 shows that there is a strong association between very
low energies at 8nm and flights to BGI (Barbados). BGI has the largest percentage of
cases associated with the top most node of the tree, representing the lowest energy
values (below —126), with a very high lift value of 21.7. The Cluster model also
highlighted a group of low energy values associated with BGI.
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Figure 4-13: Decision Tree Model of Energy at 8 nm on 777 Fleet
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A histogram of the ENGY8NM measurement is shown in Figure 4-14. It can be seen
that the distribution has an extended lower tail, with a small secondary peak at
extremely low values of below —-100. The data mining has shown that these are
strongly associated with BGI.
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Figure 4-14: Histogram of Energy at 8 nm on 777 Fleet
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There is an event (6H) to detect high energies at 8nm, but BA would normally not pay
attention to the extended tail of low energy values, assuming that some of the values
may be caused by bad data. Prompted by the data mining results, BA used their
existing FDM database to compare histograms of energy at 8nm for approaches to

BGl, and for approaches to all other airports excluding BGI. The result is presented in
Figure 4-15.

As there are few ATC constraints on approach to BGI with very low air traffic activity
there is a tendency for pilots to fly lower on the approach along the coastline.
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Application of Smiths Aerospace Data Mining Algorithms to British Airways FDM Data

A Cluster model for the 744 approach energy measurements of VEGS500 (energy
minus Vref at 500ft) and VEGS1000 (energy minus Vref at 1000ft) is shown in Figure
4-16. Cluster 10 captures the lowest values of both measurements and also has the
largest variance. The cluster is dominated by JFK, with a lift of 11.6, and contains a

744 — Landing

relatively small proportion (86 out of 2929) of all the flights into JFK.
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Figure 4-16: Cluster Model of Approach Energy Measurements on 777 Fleet
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The left hand heat map in Figure 4-17 shows where the majority of the energy data is
located. The right hand heat map shows the regions in which energy measurements
would be assigned to cluster 10, and illustrates the high variance of this cluster.
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Figure 4-17: Heat Maps for All Data (Left) and for Cluster 10 Only (Right)
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A Decision Tree model was produced for four approach energy related measurements,
ENGY8NM (energy minus Vref at 8 nm), VEGS1000 (energy minus Vref at 1000ft),
VEGS500 (energy minus Vref at 500ft), and CAS90SEC (airspeed at 90 seconds
before touchdown). This again illustrates the low energy approaches at JFK, with the
selected leaf node with low ENGY8NM and VEGS1000 values in Figure 4-18 being
dominated by JFK, with 265 cases and a lift of 12.2.
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Figure 4-18: Decision Tree Model for Four Approach Energy Measurements on 744 Fleet
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The abnormality of approaches to JFK was further highlighted by an analysis of
maximum bank angles at low levels on the approach. Figure 4-19 presents a Decision
Tree for the measurement MXBK100500 (maximum bank angle between 100ft and
500ft). JFK dominates the lowest node displayed, for bank angles of greater than 18.8
deg, with 174 cases and a lift of 12.2. From the histogram of the measurement
presented in Figure 4-20, it can clearly be seen that these values are on the extreme
upper tail of the distribution. The event analysis described in Section 4.1.4.3 identified
that all 21B events (excessive bank angle 100ft to 500ft) occurred at JFK due to the
Carnarsie approach. The findings from the measurement data provide further evidence
to support the findings of the event analysis.
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Figure 4-19: Decision Tree Model for Bank Angle Between 100ft and 500ft on 744 Fleet
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Figure 4-20: Histogram of Maximum Bank Angle Between 100 and 500ft on 744 Fleet
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A Cluster model (Figure 4-21) was also produced for the measurements MXBK100500
(maximum bank angle between 100ft and 500ft) and MXBKBL100 (maximum bank
angle below 100ft). The measurement data has be overlaid on the cluster plot, the grey
points show all landing locations and the red show landings at JFK. This airport

dominated both clusters 9 and 10.
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Figure 4-21: Cluster Model of Bank Angle Measurements on 744 Fleet
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The left hand heat map in Figure 4-22 shows that the majority of the measurement data
is located in a region of low bank angles. The right hand heat map shows the regions in
which bank angles would be assigned to cluster 10. It can be seen that cluster 10 is
capturing occurrences of both high bank angle between 100ft and 500ft, and high bank
angle below 100ft. Interestingly, the FDE database contained no occurrences of event
21B (excessive bank below 100ft). Therefore in this case the measurement data is
providing more information on bank angles at this very low level, and there may be
case for lowering the current event limit.

Figure 4-22: Heat Maps for All Data (Left) and for Cluster 10 Only (Right)

To confirm that the high bank angles were associated with the Canarsie approach a
second cluster model was produced, including runway information in the data set.
Using the original data set, cluster 10 contained 106 approaches into JFK, with a lift of
7.4. When runway heading was included, cluster 10 contained 100 approaches landing
on runway 13 (the Canarsie approach), with the lift increasing to 36.2. Therefore of the
106 approaches to JFK with high bank angles at low levels, 100 involved landings on
runway 13. This runway also dominated the approaches to JFK contained in cluster 9,
as illustrated by Figure 4-23. Clusters 9 and 10 account for 98% of all flights that used
runway 13 at JFK.
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Figure 4-23: Histograms for Approaches Landing on Different Runways at JFK Contained
in Cluster 9 (Left) and Cluster 10 (Right)

A Cluster model was produced to analyse flap speeds on the approach (flap A, B, D
and E). Figure 4-24 shows the airports associated with cluster 17, and also the region
of high flap A and B speeds included in this cluster. The results indicate that a higher
than expected number of approaches into LAX (Los Angeles) have associated high flap
speeds, with a lift of 5.4. ATC procedures at LAX often require a long straight-in final
approach at high speed with continuous descent, and sometimes cause early flap
selection.
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Figure 4-24: Cluster Model of Flap Speeds on Approach
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4.2.2.3 744 — Take-Off

Section 4.2.1 on date related trends has already discussed the association of high
climb out speeds with the locations of DOH (Doha) and BAH (Bahrain), due to the high
percentage of take-offs at low gross weights.

An analysis of take-off pitch attitudes identified the effect of altitude on aircraft take-off
performance. Figure 4-25 shows cluster distributions for the measurements
MXTOFPCHAT (maximum pitch attitude during take-off) and TOFFALT (take-off
altitude). Cluster 5 captures a relatively tight grouping of take-offs with low maximum
pitch attitudes and a high airport altitude. 99% of the cases assigned to this cluster are
for the high altitude airports of JNB (Johannesburg) and NBO (Nairobi), with very high
lifts of 23.8 and 23.9 respectively. The analysis is identifying normal aircraft
performance variation, with a reduction in performance at high altitudes.
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Figure 4-25; Cluster Model of Pitch Attitude on Take-Off and Airport Altitude
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5 Assessment of Results by British Airways

The analysis conducted during this proof-of-concept project delivered useful and
intriguing results.

The data mining tool highlighted many items of which British Airways was already
aware from using its existing analysis techniques. This is not a criticism, but is hard
evidence that the tool is correctly identifying relationships of interest. In turn this gives
confidence that other relationships detected are worth investigating. Of course if
previous analysis had not been carried out on the data then these items would be
perceived to have a greater safety value. In addition British Airways is not aware of
any known issues that should have been identified by the tool and were not.

The data mining tool unearthed many interesting patterns and relationships at what
could be called a “second level” down. These had not previously been detected using
existing analysis techniques and, if they had, it is likely that they would have been
dismissed as noise or random groupings. The software provided quantitative
information showing the degree of confidence that there was something non-random
occurring.

The tool was adept at detecting date related changes. This would prove useful for
monitoring the British Airways operation for unintended consequences as a result of
changes to operational procedures. It would also prove useful for monitoring changes
to the existing Flight Data Analysis software.

The tool was effective in analysing the FDM database for patterns where the maximum
parameter level recorded did not exceed the pre-determined event level (e.g. maximum
bank angle below 100ft). It could also be used on the FDM database to aggregate data
and provide a ranking of airports from best to worst.

The data mining tool would be useful for providing routine monthly management
reports using specially created models running on the FDM and FDE databases. It
could probably replace some of the existing analysis process with a more efficient
method, thereby freeing up scarce expertise to focus on the results rather than the
process. It can therefore be used to complement and improve existing processes.

The tool would enable more in-depth investigation into individual pilot handling events.
It would more easily identify if any pilots have recurring handling characteristics outside
the fleet norm.
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5.1 Observations on Data Mining Tool and Suggestions for Improvement

The tool seemed easy to use once familiarity was gained with the various analysis
configuration settings and outputs. A new model run took about ten minutes to set up
and about twenty minutes to analyse the results for interesting patterns or
relationships. A repeat of the same model on different data reduced these numbers to
two and fifteen minutes respectively. Changes to the user interface for the input
selections and the output displays could be made which would reduce the set up and
analysis times. For example more information with regard to location analysis, giving
percentage of total database sectors and runway heading would aid results analysis.
None of these changes are particularly difficult to make. The mining models generally
took less than a minute to run on a state of the art PC.

As suggested in previous sections of the report, analyses looking for negative as well
as positive associations would prove valuable. Because of the need to preserve
confidentiality of the event and measurement data going outside British Airways, the
date information was shortened to month and year only, removing the ability to connect
records between the FDE and FDM databases. This ability should be restored for any
internal analysis within BA. Crew identifiers would be a useful adjunct to the FDM
documentary data fields and analysis capabilities would be increased if these are
added to the FDM data set.

5.2 Assessment of the Tool's Value to Flight Safety Analysis

The tool provided an ability to unearth “second level” items of interest in the FDE
database that had previously not been detected. It also provided new insights into the
FDM data that complemented the information derived from FDE. By running preset
mining models on a regular basis the data mining tool should generate useful
management information and provide an overall monitor of the British Airways
operation to detect any undesirable changes. If used for the routine analysis of the
FDE database the tool could replace some of the existing manual analysis processes
with a more efficient method. However, in general, the data mining tool would be used
to complement rather than replace the existing event and measurement data analysis.
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6 Conclusions

This Federal Aviation Administration sponsored data mining proof-of-concept
demonstration has been a very interesting and worthwhile project. The results
obtained have clearly demonstrated the benefits of utilising data mining tools within an
airline Flight Data Monitoring (FDM) program.

Data mining algorithms have been applied to databases containing three years of flight
data events and two years of measurements from British Airways’ FDM program on its
Boeing 777-200 and 747-400 fleets. Although some patterns detected were due to
changes in the flight data analysis, the quality of the databases was good and enabled
valid and meaningful results to be obtained.

Mining of the event data identified date-related trends, associations between different
events, and significant associations between events and take-off and landing locations,
crew codes, aircraft registrations and the raising of Air Safety Reports.

Mining of the measurements also identified date-related trends, and significant
associations between groups of measurements and take-off and landing locations. The
measurement analysis provided additional information to support the findings of the
event analysis, and in some cases identified associations not present in the event data.

As was expected, the most obvious findings from the data mining related to issues that
were already known to British Airways, which operates a very mature and
comprehensive FDM program. These “primary” findings served to validate the tool and
provide confidence in its results.

However, the data mining tool also unearthed many interesting patterns and
associations at what could be called a “second level” down which had not previously
been detected using existing analysis techniques. Some of these were in the extreme
tails of measurement data distributions, which previously may have been dismissed as
noise or random groupings.

It is concluded that data mining can provide new insights into patterns and associations
within databases of flight data events and measurements. Running preset mining
models on these databases on a regular basis would provide airlines with useful
additional safety management information. It should also improve the efficiency of the
flight data analysis process.

Both Smiths Aerospace and British Airways believe that the proof-of-concept study
demonstrates that data mining has a very useful role to play in Flight Data Monitoring,
and will be a valuable complement to existing analysis tools. There is clear potential for
data mining tools to become an integral part of the suite of tools used in an airline FDM
program.
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7 Recommendations — possible next steps

This project was a short duration proof of concept demonstration of the application of
data mining techniques to airline flight data. There is clearly a need for future work to
build on the experience gained from the exercise in order to produce an operational
data mining capability. Developing such a capability would require the following steps:

1

Perform a more comprehensive data analysis to optimise the mining process
(including selection of input data and algorithms) to provide the most useful
outputs for the airline. There is a need to optimise: (i) The selection of
complementary FDE and FDM parameters to provide the best overall picture of
potential operational risks; and (ii), the application of complementary data mining
algorithms to provide the clearest picture of anomalous trends.

Develop a standard set of data mining models, which could then be run routinely
by the airline with minimal effort. Developing a standard set of mining models is
important as this will minimise analysis workload, and also facilitate trend
monitoring by enabling comparison of consistent model outputs at different
periods of time.

Configure the data mining tool to interface to the databases of events and
measurements, automatically run a set of analyses, and present results in the
most meaningful format to the airline. This step is one of tailoring the data mining
tool to the specific requirement of airline Flight Data Monitoring programs. Smiths’
adoption of an open standard data mining framework linked to third party tools is
designed to facilitate this approach, enabling the production of a tool well
matched to airline requirements. Alternatively some airlines may wish to obtain
new analysis capabilities though the use of a data mining service, and Smiths
can also support this approach.

In parallel with the direct development of a data mining capability described above,
there is a need for airlines to determine how to obtain the maximum benefits from data
mining by:

1

Optimising the information provided by their current Flight Data Monitoring
programs. For example, the proof of concept demonstration identified that
additional benefits would be obtained if BA’s FDE and FDM records could be
directly linked, and if additional documentary information such as pilot codes
could be added to the FDM data.

Determining how best to disseminate the new types of information provided by
data mining both internally and externally, and how to best utilise this information
in the closed loop process of identifying, assessing and addressing operational
risks.
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APPENDIX A

Table Al presents a list of the Flight Data Events implemented on BA’s 777 and 744 fleets, and the Flight Data Measurements that are
related to these events.

Table A2 presents a list of additional Flight Data Measurements that do not have an associated event.

Table Al: BA 777 & 744 Events and Associated Measurements

Ec\ge dnet Description Measurement Description

01A VMO Exceedance MXVMO MAX VMO

02A MMO Exceedance MXMMO MAX MMO

03A Flap Placard Speed Exceedance MXFLPALND CAS MINUS FLAP SPEED (FLAP 1) LANDING
MXFLPBLND CAS MINUS FLAP SPEED (FLAP 5) LANDING
MXFLPCLND CAS MINUS FLAP SPEED (FLAP 15) LANDING
MXFLPDLND CAS MINUS FLAP SPEED (FLAP 20) LANDING
MXFLPELND CAS MINUS FLAP SPEED (FLAP 25) LANDING
MXFLPFLND CAS MINUS FLAP SPEED (FLAP 30) LANDING
MXFLPATO CAS MINUS FLAP SPEED (FLAP 1) T/O
MXFLPBTO CAS MINUS FLAP SPEED (FLAP 5) T/O
MXFLPCTO CAS MINUS FLAP SPEED (FLAP 15) T/O
MXFLPDTO CAS MINUS FLAP SPEED (FLAP 20) T/O
MXFLPETO CAS MINUS FLAP SPEED (FLAP 25) T/O

03G Gear Down Speed Exceedance nil

03l Gear Up Selected Speed Exceedance nil

03J Gear Down Selected Speed Exceedance CASGRSELD CAS AT GEAR SELECTED DOWN

03M Airspeed low for configuration nil

4 Exceedance of Flap/Slat Altitude nil

5 Exceedance of Max Operating Altitude nil

06A Approach Speed High Within 90 secs of T/D CAS90SEC CAS AT 90SECS BEFORE T/D

06B Approach Speed High Below 500ft AAL CASATH500 CAS MINUS VREF AT 500FT

06C Approach Speed High Below 50ft AGL CASATR30 CAS MINUS VREF AT 30FT

06H High energy at 8nm MXENGY8NM ENERGY AT 8NM VREF

06J High Energy (knots equivalent) at 1000' AAL VEGS1000 ENERGY MINUS VREF AT 1000FT

06K High Energy (knots equivalent) at 500" AAL VEGS500 ENERGY MINUS VREF AT 500FT

A-1 f
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Event

Code Description Measurement Description

07A Approach Speed Low Within 2 mins of T/D nil
07B Approach Speed Low Below 25ft Radio CASTDOWN CAS AT TOUCHDOWN

CASATR30 CAS MINUS VREF AT 30FT
08A Climb Out Speed High Below 400ft AAL MNCLS3540 MIN CLIMB SPEED 35FT TO 400FT
08B Climb Out Speed High 400' to 1000' AAL MIN400150 MIN CLIMB SPEED 400FT TO 1500FT
08C Climb Out Speed Low 35' AGL to 400' AAL MNCLS3540 MIN CLIMB SPEED 35FT TO 400FT
08D Climb Out Speed Low 400' to 1500 AAL MIN400150 MIN CLIMB SPEED 400FT TO 1500FT
09A Inst Pitch Rate High on Take-Off TOFFPRM INSTANTANEOUS PITCH RATE AT T/O
09B Average Pitch Rate High TOFFPRA AVERAGE PITCH RATE AT T/O
10A Unstick Speed High TOFFSPEED CAS MINUS V2
10B Unstick Speed Low TOFFSPEED CAS MINUS V2
10C Tyre Limit Speed High at Take-Off nil
10D Slow acceleration on take-off TOACC SECONDS FROM 80KTS TO 120KTS T/O
11A Elev During T/O run nil
19A Long Flare TIME25TD TIME25FTTO T/D
19B Short Flare TIME25TD TIME25FT TO T/D
20A Pitch Attitude High During Take-Off MXTOFPCHA MAX PITCH DURING T/O
20B Abnormal Pitch Landing (High) MXPTCHLAN MAX PITCH DURING LANDING

LDGINSTPITCH MAX INST PITCH DURING LANDING
20C Abnormal Pitch Landing (Low) nil
20G Excessive Pitch Attitude nil
21A Excessive Bank below 100ft AGL MXBKBL100 MAX BANK ANGLE BELOW 100FT
21B Excessive Bank 100' AGL to 500' AAL MXBK10050 MAX BANK ANGLE 100FT TO 500FT
21C Excessive Bank above 500ft AAL MXBKABV50 MAX BANK ANGLE ABOVE 500FT
21D Excessive Bank near Ground (Below 20ft AGL) MXBKNRGRN MAX BANK ANGLE BELOW 25FT
22C Slow climb to 2500ft AAL after T/O nil
22D Initial Climb Hght Loss 20' AGL to 400" AAL nil
22E Initial Climb Hght Loss 400' to 1500' AAL nil
22F Excessive Time to 1000ft AGL After Take-Off TIMTO1000 TIME TO 1000FT
22G High Rate of Descent Below 2000 ft AGL MXRODB2000 MAX ROD BELOW 2000FT
22H Altitude deviation nil
23A High Normal Acceleration on Ground MXNMLGRND MAX NMLA ON GROUND
23B High Normal Acceleration in Flight MXNMLAIR MAX NMLA AIR
23C High Normal Acceleration at Landing MXNMLALAN MAX NMLA LANDING
23D Firm nose wheel touchdown nil
24 Go-Around from below 1000ft. nil
24A Go-Around from above 1000ft nil
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Event

Code Description Measurement Description
24C Inadvertent TOGA activation nil
26 Abandoned Take-Off nil
27A Rudder deflection above 1000ft AAL MXRUDA1000 MAX RUDDER ABOVE 1000FT
27B Rudder reversal below 1000ft AAL nil
40C Abnormal Configuration. Speedbrake with flap nil
41 Taxi without take-off flap set nil
42 Low on Approach (Between 3 & 2 mins of T/D) nil
42B Too high at 1 minute to touchdown HAAL60TD HEIGHT AT 60 SECS TO T/D
43 Spdbrakes out below 1000' AAL MNHSBG43A MINIMUM HT SPEEDBRAKE USED ON APPROACH
44A GPWS Hard Warning nil
44B GPWS Soft Warning nil
44C GPWS False Warning nil
44D GPWS Windshear Warning nil
45A Reduced Lift Margin
46A Stick Shake nil
46B False Stick Shake nil
47 Early Configuration Change After T/O (Flap) CONFIGHT HEIGHT OF FIRST FLAP SELECTION AFTER T/O
48A Late Land Flap (Not in posn below 500 ft AAL) HALLSTFPCH HEIGHT AT LAST CHANGE IN FLAP
48B Reduced Flap Landing nil
48D Flap Load Relief System Operation nil
49 TCAS Resolution Advisory nil
50A Deep Landing XTD LANDING DISTANCE PAST G/S AERIAL
50C Short Landing XTD LANDING DISTANCE PAST G/S AERIAL
51A Gear Not Locked-Down at 1000FT AAL HAALGRDN HEIGHT AT GEAR DOWN
56A Deviation Under Glideslope (below 600ft AAL) NEGGSDEV MAX NEG GS DEVIATION BETWEEN 600FT AND 150FT
56B Deviation Above Glideslope (below 600ft AAL) POSGSDEV MAX POS GS DEVIATION BETWEEN 600FT AND 150FT
56C Deviation from Localiser Below 600ft nil
58B Excess Tailwind on Landing MXTAILWIND MAX TAIL WIND
75A Low power on approach below 500ft MINN1 MINIMUM N1 500FT TO 50FT
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Table A2: Additional Measurements

Measurement Description

SERIALNO SERIALNO

REPLAYDATE REPLAY DATE

ACREG A/C REGISTRATION

ACTYPE A/C TYPE

DEPDATE DEP DATE

REG REGISTRATION

DEPAP DEP AIRPORT

LNDAP LND AIRPORT

DEPAPTYPE DEP AIRPORT TYPE
LNDAPTYPE LND AIRPORT TYPE

GMTTO GMT T/O

GMTLND GMT T/D

FLLENGTH FLT DURATION

VARIANT A/C VARIANT

FLNO FLT NUMBER

TOFFAUW T/0 WEIGHT

TOFFRUNWA T/0 RUNWAY

TOFFALT T/O ALTITUDE

TOFFTEMP T/O TEMP

TOFFVR T/OVR

TOFFV2 T/OV2

CASATH1000 CAS MINUS VREF AT 1000FT
LANDAUW LANDING WEIGHT
LANDRUNWA LANDING RUNWAY

LANDALT LANDING ALT

LANDVREF LANDING VREF

TIME200KT TIME FROM 200KTS TO T/D
FUELTD TOTAL FUEL ON LANDING
TIME100TD TIME FROM 100NM TO T/D
FUELD100TD FUEL USED FROM 100NM TO T/D
TODIST T/O DISTANCE FROM START OF ROLL TO UNSTICK
TIMEFFLTD TTIME SINCE FLAPS CLEAN TO T/D
LNDRES LANDING WEIGHT * 1000
TOINSTPITCH INSTANTANEOUS PITCH AT T/O
TAXITIME TAXI TIME

TAXIFUEL TAXI FUEL

MXROTPOS ROTATION SPEED REL TO V2
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