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Executive Summary 
 
Many airlines analyse data downloaded from flight data recorders to determine how their aircraft 
are being flown in order improve the safety of their flight operations. This process is known in 
Europe as Flight Data Monitoring (FDM) and in the USA as Flight Operations Quality Assurance 
(FOQA). Events occur when certain flight parameters exceed a predetermined threshold and, 
after investigation, these events are usually stored in an event database. Some airlines such as 
British Airways (BA) also record a selection of maximum or minimum parameter values (known 
as measurements) on every flight and store these in a separate database. The purpose of this 
Federal Aviation Administration sponsored proof-of-concept demonstration was to determine the 
additional value of applying data mining tools to these FDM databases as compared to the 
current analyses that airlines conduct. 
 
The demonstration was performed on British Airways’ flight data event and measurement 
databases for their Boeing 777-200 and 747-400 fleets. The event databases covered a period 
of three years from June 2001 and each contained approximately 2,500 records, whilst the 
measurement databases covered a two year period from June 2002 and each contained 
approximately 40,000 records. The data mining tool used for the project had been produced by 
Smiths Aerospace (Smiths) and contained learning algorithms such as Clustering, Decision 
Trees and Association Rules that Smiths had specifically adapted and developed for aerospace 
applications.  Smiths carried out the data mining with input from BA, and the results were 
analysed and interpreted by a joint review team. 
 
The analysis conducted during this proof-of-concept demonstration delivered useful and 
intriguing results. As was expected, the most significant findings were already known to BA, 
which operates a very mature and comprehensive FDM program. These primary findings served 
to validate the tool and provide confidence in its results.  However, the data mining tool also 
unearthed many interesting patterns and relationships at what could be called a “second level” 
down which had not previously been detected using existing analysis techniques.  If they had 
been detected it is likely that they could have been dismissed as noise or random groupings. 
 
The demonstration showed that data mining can provide new insights into patterns and 
relationships within the databases of flight data events and measurements. Running preset 
mining models on these databases on a regular basis would provide airlines with useful 
additional safety management information.  It should also improve the efficiency of the flight 
data analysis process. Both Smiths and BA believe that the proof-of-concept demonstration 
shows that data mining has a very useful role to play in Flight Data Monitoring, and will be a 
valuable complement to existing analysis tools. 
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Glossary of Terms 
 
ASR Air Safety Report 
 
ATC Air Traffic Control 
 
BA British Airways 
 
BASIS British Airways Safety Information System 
 
FAA Federal Aviation Administration  
 
FDE Flight Data Exceedances  
 
FDM (BA) Flight Data Measurements 
 
FDM Flight Data Monitoring 
 
FOQA Flight Operations Quality Assurance 
 
GAIN Global Aviation Information Network 
 
GPWS Ground Proximity Warning System 
 
GUI Graphical User Interface 
 
OLE DB Microsoft component data base specification 
 
PAPI Precision Approach Path Indicator 
 
SQL Structured Query Language 
 
TCAS  Traffic Collision Avoidance System 
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1 Introduction 
One of the goals of the FAA Office of System Safety (ASY) is to identify and evaluate 
methods and tools not previously applied to aviation safety data with the goal of 
improving aviation safety industry-wide. One of the most interesting developments in 
information management is the increasing use of “data mining” tools that can discover 
hidden patterns and relationships in data without specific queries from a human expert.  
Emphasis is placed on automated learning from data within large databases, although 
subject matter expertise from a human is always needed to review the initial results 
from a data mining project and to determine which of the patterns and relationships are 
of real interest. 
 
British Airways has many years of experience in the development and operation of an 
effective airline Flight Data Monitoring (FDM) program. Smiths Aerospace has 
developed a data mining tool that has successfully been applied to aircraft health 
monitoring data, and also to flight data from rotorcraft operations in the North Sea in 
Europe. Under a contract to RS Information Systems, Inc. Smiths Aerospace has 
carried out a proof-of-concept demonstration on the application of data mining 
algorithms to flight data from British Airways’ FDM program (see Reference [1], 
Statement of Work). 
 
The results of the proof-of-concept demonstration are presented in this report. Section 
1 contains background information on the British Airways safety reporting and flight 
data monitoring programs, and also on the Smiths Aerospace data mining tool and 
algorithms used on this project.  Section 2 describes the input data for the project and 
its cleansing and transformation, whilst Section 3 presents an overview of the data 
analysis performed. Section 4 represents the main body of the document and contains 
a wide selection of example analysis results and findings. Section 5 gives British 
Airways’ assessment of the results of the proof-of-concept demonstration. Summary 
conclusions from the project are presented in Section 6 and recommendations on the 
possible next steps are presented in Section 7. 
 

1.1 Background – Safety Reporting and Flight Data Analysis in British Airways 

There are two mainstream methods of safety event monitoring in British Airways: 
 
(i) Safety incident reporting, covering Air Safety Reports (ASR), Ground Occurrence 

Reports, Cabin Safety Reports, Ground Handling Reports and Occupational 
Safety Reports 

 
(ii) Flight Data Monitoring, covering Flight Data Events and Flight Data 

Measurements 
 

1.1.1 Safety Incident Reporting 

Using Air Safety Reporting as an example, the typical process is as follows.  British 
Airways Flying Crew Orders define safety events that must be reported by the flight 
crew. If an incident occurs the flight crew will fill in an ASR form which will be entered 
into the British Airways Safety Information System (BASIS). The Air Safety department 
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will investigate according to the seriousness of the event. Some event investigations 
will require significant effort whilst other events will just be recorded in the database. 
The BASIS tool helps manage single incident investigations and records the outcome 
and corrective actions. 
 
In addition to the investigation of an incident, the Air Safety department will classify all 
Air Safety incidents using the BASIS Descriptor Classification System (see Reference 
[2]). The classification system is based on Event Descriptors which describe a real or 
potential safety occurrence.  Event Types are a convenient way of grouping Event 
Descriptors.  Each Event Descriptor is unique and is found in the list of only one Event 
Type. The classification system also captures the Immediate Effect of the incident on 
the aircraft and what the Operational Effect was (if any). The purpose of the 
classification system is to enable easy querying and analysis of the ASR database to 
detect trends, anomalies unusual patterns etc. The BASIS software has well developed 
functionality that facilitates this analysis.  The classification system and the associated 
software have been continually developed and improved over the past decade. 
Significant thought and effort was applied to the classification system by experts from 
the airline community in 2001 and 2002 in order to further enhance the system. 
Because of the quality of the classification system and the analysis functionality of the 
BASIS software, the British Airways Safety department has always believed that text 
mining applied to a BASIS ASR database was unlikely to provide significant new 
insight above what is already available using the current analysis tools. 
 

1.1.2 Flight Data Monitoring 

British Airways has a well developed Flight Data Monitoring system which measures or 
monitors how aircraft in a fleet are being flown by the analysis of data taken from the 
aircraft’s Quick Access Recorder. Safety events such as high energy approaches or 
deep landings are detected using sophisticated algorithms running in the event 
detection program called FDT (Flight Data Traces). A Go-Around example event is 
shown in Figure 1-1 below. 
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Figure 1-1: Go-Around Event From FDT 

The full list of the events that are monitored is presented in Appendix A.  Validated 
events are transferred to the Flight Data Exceedances (FDE) database. FDE has the 
functionality to analyse events by aircraft type, event type, airfield, date, etc. and can 
present the results in graphical formats selected as most appropriate for that particular 
analysis. Example analysis outputs showing event frequency by Category and Location 
are presented in Figures 1-2 and 1-3 below. 
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Figure 1-2: Event Frequency by Category 

 

 
Figure 1-3: Event Frequency by Location 
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There is also an integrated risk analysis program that automatically assigns a "severity" 
to all events using exceedance margins, permitting comprehensive analysis of events 
by risk rather than frequency of occurrence. The severity index for glideslope deviation 
is shown in Figure 1-4 below. 
 

 

Figure 1-4: Severity Index for Glideslope Deviation 
 
Analysis of the FDE database can be performed in many ways, for example event rate 
per 1000 sectors, severity, location, pilot reference number etc.  Obviously only the 
pre-determined events listed in Appendix A are monitored and detected. Events 
sharing the same Event Code are grouped together but no further classification of 
events takes place in a manner similar to the BASIS ASR Descriptor system. Therefore 
there is a greater opportunity for a data mining tool to provide new insights into the 
safety events contained in the database. 
 
Flight Data Measurements (FDM) is a different, but complementary, approach to the 
analysis of flight data. Instead of only looking at exceedances or events, FDM analyses 
the maximum or extreme value of many flight parameters on each and every flight. For 
example, maximum ‘g’ force on landing, maximum rate of descent, maximum pitch on 
landing etc. A full list of FDM parameters is presented in Appendix A. 
 
FDM can calculate and display a parameter’s distribution over thousands of flights. 
Two distributions on the same chart can easily be requested comparing, for example, 
the same measurement parameter on another aircraft type, registration, station, date 
range or against a standard normal distribution, as shown in Figure 1-5. 
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Figure 1-5: Example of Normal Distribution Chart 
 
The mean and standard deviation are automatically calculated for each distribution and 
can also be plotted to illustrate the spread of the maximum values, as shown in Figure 
1-6. 
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Figure 1-6: Example of Standard Deviation Chart 

However, in addition to the current analysis techniques, there is significant potential for 
a data mining tool to detect unusual patterns and associations in the FDM database. 
 

1.2 Objective of the Project 

The primary objective of the proof-of-concept demonstration was to determine whether 
data mining techniques can help improve airline or system safety by identifying 
unknown risks, or providing an ability to monitor the effectiveness of operational 
changes, that is currently not being achieved by the existing Flight Data Monitoring 
system. In addition, the potential for the data mining tool to perform existing analysis in 
a more effective manner and/or to provide regular management reports was 
investigated. 
 
The following factors were relevant in determining the specific safety analysis goals of 
this project. 
 

 Most of the intellectual effort in Flight Data Monitoring has gone into the event 
detection algorithms in order to (a) improve event detection, (b) avoid the capture 
of non-events, (c) define new events which may have previously proved 
infeasible to detect (e.g. runway distance remaining) and (d) improve the display 
of events (e.g. overlay of track on approach plates). A classification system 
similar to that used in BASIS ASR has not been developed and thus the 



Application of Smiths Aerospace Data Mining Algorithms to British Airways FDM Data 
 

 
 8 
 

opportunity for data mining to produce meaningful new information is much 
larger. 

 
 Air Safety Reports are those defined in Flying Crew Orders plus any other event 

or condition that the flight crew believe is unsafe. Flight data events can only 
include those specified thus there is a greater potential to miss unsafe conditions. 
The “you don’t know what you don’t know” syndrome. 

 
 The FDM database of measurements is usually interrogated to find the answer to 

a specific query e.g. “how does the distribution of landing distance at one airfield 
compare to another”. The existing analysis tool can generate and display 
distributions but cannot look for anomalies.  There is significant potential for a 
data mining tool to detect unusual patterns and associations in the FDM data 
base. 

 
 Aircraft operating procedures are changed for a number of reasons.  Sometimes 

the change is specific enough that it is relatively simple to monitor the 
consequences using the existing flight data tools. However, a data mining 
algorithm that was run regularly could detect adverse or favourable trends that 
could be linked to changes in operating procedures, training etc. 

 
The specific safety analysis goals established for the proof-of-concept demonstration 
project were: 
 
(i) Analyse the Flight Data Exceedances (i.e. event) database to detect previously 

unknown patterns or trends that could adversely affect flight safety. 
 
(ii) Analyse the Flight Data Measurements database, looking for unusual 

distributions or patterns that could identify areas of risk to the operation. 
 
(iii) Analyse the data by aircraft registration and fleet to identify flight data recording 

equipment or sensor problems. 
 
(iv) Crosscheck the existing software; i.e. a comparison between fleets may indicate 

that there are events going undetected in a fleet due to incorrect specification or 
programming. 

 
(v) Detect current known patterns as a validation of the effectiveness of the data 

mining tool. 
 
(vi) Determine if the data mining tool could provide the existing functionality in a more 

effective manner than the current system. 
 
The data mining demonstration was performed on FDE and FDM data from the British 
Airways Boeing 777-200 and Boeing 747-400 aircraft fleets. 
 

1.3 Overview of the Smiths Aerospace Data Mining Tool 

The tool used on this program is a state-of-the-art data mining tool that has been 
produced by Smiths Aerospace (Smiths). The tool contains algorithms found in many 



Application of Smiths Aerospace Data Mining Algorithms to British Airways FDM Data 
 

 
 9 
 

commercial data mining packages such as Clustering, Decision Trees, Association 
Rules, etc. The philosophy behind the tool development is to take those algorithms 
from the research community that are generally recognised as being ‘best in class’ and 
adapt/extend them for aerospace applications. This requirement to provide ‘the best 
solution for the application’ drove the need for Smiths to develop its own data mining 
tool since the mix of algorithm capabilities being sought were not available in any single 
commercial tool. As Smiths’ aerospace application domains are demanding and 
present some novel challenges, it is imperative that the company has the ability to 
adapt and develop the tool’s capabilities. 
 
Data mining tools need good interfaces to the data and the user. The data interface 
must handle different data storage formats and facilitate the processing of large 
volumes of data. The user interface must assist the analyst in managing the 
construction of mining models1 and the browsing of mining results. In the Smiths data 
mining tool these interfaces are kept separate from the mining algorithms. This 
separation is facilitated by the adoption of a data mining framework standard produced 
by Microsoft in consultation with other data mining tool vendors. This standard is called 
the ‘OLE DB for Data Mining Specification’. A query engine forms part of the data 
mining framework. This engine processes data mining language extensions to SQL. 
Within the framework a mining model is treated conceptually as a relational table. In 
standard SQL there are commands to CREATE a table, INSERT INTO to populate a 
table, and SELECT to browse the contents of a table. Treating a mining model as a 
special type of table provides enormous flexibility. SQL type commands are used to 
train mining models and to query their results or make predictions. These commands 
provide the link between the data and mining algorithms, and also between user 
requests and mining results. The real appeal of the data mining framework is that it 
provides a generic specification for the way in which mining algorithms should interface 
to the data and the types of query which mining results should support. 
 
Smiths’ data mining tool is not designed to be an off-the-shelf commercial product for 
general purpose use. Such products must appeal to a wide user base, and a large 
amount of effort has to be placed into providing a generic user interface with 
comprehensive data views, charts, menus and tips. Smiths see more value in 
concentrating effort on algorithm capability and the data interface. Aerospace 
application domains present specific challenges and Smiths’ focus is on providing 
solutions to these challenges, utilising (i) its experience developing a range of 
aerospace products, (ii) its application knowledge and (iii) skills in artificial intelligence 
and data mining. The emphasis for Smiths therefore is on extending the tool’s core 
algorithm capabilities to meet specific application requirements. A customer’s 
requirements can be satisfied either by a customised tool, or an analysis support 
contract, or a combination of the two. The adoption of the ‘OLE DB for Data Mining 
Specification’ facilitates this approach by enabling the Smiths data mining tool to 
leverage third party products for the user interface. For example, the Smiths data 
mining tool has been demonstrated through a range of interfaces: Microsoft’s Analysis 
Services, a Microsoft command driven query tool, Smiths specific interfaces for both 
client machine and web services, and a tool add-in for Microsoft’s Excel. Some 
example GUIs are shown in Figure 1-7. This ability to interface to a wide range of GUIs 

                                                 
1 A mining model is the structure and collection of statistics learnt from the data. A model may be in the 
form of a decision tree, or a collection of clusters, or a collection of rules, etc. Internally, the model is 
stored as a table which offers flexibility for querying or when used to perform predictions.  
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and databases means that the application specific capability provided by Smiths is 
unrivalled by any single commercial data mining product. 
 

 

Figure 1-7: Example Data Mining Tool GUIs 

1.3.1 Algorithms Used on This Program 

The primary Smiths algorithms used for mining of the BA FDE and FDM data were 
“Decision Tree”, “Cluster” and “Association Rules” learning algorithms. The three 
algorithms provide complementary ‘views’ on the data and, by combining their outputs, 
a clear picture of significant patterns or trends can be provided. All algorithms have 
predictive capabilities. 
 
Decision Trees have proved to be one of the most practical machine-learning 
algorithms applied to real-world problems. The Decision Tree can be applied to 
discrete or continuous data, and is a ‘supervised’ algorithm that derives decision 
boundaries to partition data according to particular characteristics. For example it can 
search for regions in the event or measurement data that characterise airport locations. 
It learns to predict the values of a predictable attribute (or item of information, e.g. take-
off/landing location, pilot, event type) from a set of predictor attributes (i.e. other items 
of information). The algorithm can learn to predict multiple attributes during a single 
learning run. The learnt prediction model is represented as a tree with ‘nodes’ and 
‘branches’, where a node denotes an attribute, and a branch an attribute value. A path 
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in the tree represents a particular combination of attribute values (e.g., location = x and 
pilot = y). All nodes along a path contain statistics representing the distribution of the 
predicted values corresponding to the predictor values denoted by that path. A pruning 
algorithm limits the size of the tree based on configurable input parameters. Figure 1-8 
shows an example Decision Tree and the statistics of a selected node. 
 

 

Figure 1-8: Decision Tree and Output Statistics of a Selected Node 
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The Cluster algorithm is an ‘unsupervised’ algorithm that partitions data (e.g. flight data 
measurements) into a number of groups or clusters. The data items within a cluster 
have more in common with other items in the same cluster than they do with items in 
other clusters – items within a cluster are said to be similar. Clustering can therefore 
reveal any natural structuring in the data. The cluster technique models the statistical 
distribution of the data using a maximum likelihood algorithm. The version implemented 
by Smiths has many powerful features, for example an ability to indicate the optimum 
number of clusters, and the availability of many parameters to control the complexity of 
the model. Both continuous and discrete attributes can be input to the cluster algorithm. 
Different types of predictions are supported by the algorithm, which adds significantly to 
its capability for constructing statistical models. Figure 1-9 presents example Cluster 
plots and the statistics of a selected cluster. The left hand display shows the cluster 
locations and sizes (at one standard deviation), with the input data overlaid on the plot. 
The right hand display shows a “heat map” to indicate the density of the data in the 
different regions of the plot (lighter colour = higher density). 
 
 

 

Figure 1-9: Cluster Plots and Output Statistics of a Selected Cluster 
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The Association Rules algorithm detects significant associations between objects (e.g. 
there is a high probability of ‘deep landing’ at location x). Associations are expressed 
as conditional rules and a single rule can express the association between multiple 
objects. A notion of significance is specified using a number of algorithm parameters. 
The Association Rules algorithm was primarily applied to the event data, which is 
discrete data, but it could also be applied to continuous (i.e. measurement) data. Figure 
1-10 presents an example set of learnt association rules. 
 

 

Figure 1-10: Association Rules Algorithm Outputs 

All three learning algorithms generate similar statistics to indicate the significance of 
patterns discovered in the data. The key statistics are: 
 

 “Confidence” or “Probability”: This is the proportion of the data items contained 
within a particular tree node or cluster that have a particular association (e.g. the 
proportion for which the airport was JFK). For the Association Rules it is the 
proportion of the first named data item for which a particular rule applies (e.g. the 
proportion of event 24s that exist for which an event 44D also exists). 

 
 “Support” or “Cases”: This is simply the number of data items contained within a 

particular tree node or cluster that have a particular association (e.g. the number 
of cases for which the airport was JFK). For the Association Rules it is the 
number of data items for which a particular rule applies (e.g. event 24 exists and 
event 44D exists). 

 
 “Lift”: This is a normalised measure of the significance of an identified pattern in 

the data. It is a ratio between the observed number of data items contained within 
a particular tree node or cluster, or for which a particular rule applies, that have a 
particular association (e.g. the number of cases of event 21B for which the airport 
was JFK) to the expected number given a random distribution of the data item 
associations (e.g. assuming that the rate of event 21B occurrences at JFK should 
be in proportion to the rate of occurrence of all events at JFK). Two normalisation 
methods were used for an analysis of events occurring at different airport 
locations, the first based on the rate of occurrence of all events at the different 
locations, and the second based on the number of sectors flown to those 
locations (identified from the number of flight data measurement records). A lift 
value of 1 means that the observed number of data items exactly matches the 
expected number assuming a random distribution of the data. A lift value of less 
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than 1 means that there are less data items than expected, and a value of greater 
than 1 means that there are more items than expected.  For this analysis, lift 
values of greater than 2 were considered to be significant in terms of the 
identification of abnormally high concentrations of data items. 
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2 Preparation of Data and Tool 

2.1 Description of Input Data 

Two BA long haul fleets were analysed in the data mining demonstration; the Boeing 
777-200 (777) fleet and the Boeing 747-400 (744) fleet.  Two data sets were acquired 
for each fleet, the first set from BA’s FDE database of events and the second from the 
FDM database of measurements. For both fleets the FDE data covered the period from 
June 2001 to June 2004 and the FDM data covered the period from June 2002 to June 
2004. The FDM database is much larger than the FDE database because a 
measurement record is generated for every flight, whereas events are only detected on 
a small percentage of flights (typically less than five percent). 
 
The Boeing 777-200 data comprised 2,169 event records (from FDE) and 40,813 
measurement records (from FDM). The Boeing 747-400 data comprised 2,550 event 
records and 39,709 measurement records. Each event record contained 24 data items 
and each measurement record contained 87 different parameters. 
 
All the FDE event codes and their descriptions are listed in Table A1 in the Appendix. 
The FDM measurement names and descriptions are listed in Tables A1 and A2, with 
Table A1 containing those measurements that can be directly related to a particular 
event code. 
 
In addition to the event parameters, the event records contained the following 
documentary data fields which were used during the analysis: 
 

 Aircraft Registration 
 Departure Airfield 
 Landing Airfield 
 Crew codes for Captain and Co-pilot  (de-identified) 
 Severity measure for the event 
 Flight phase (take-off, climb, cruise, descent, approach, go-around, and landing) 
 ASR flag (whether or not an Air Safety Report was raised) 
 Date 

 
In addition to the measurement parameters, the measurement records contained the 
following documentary data fields which were used during the analysis: 
 

 Aircraft Registration 
 Departure Airfield 
 Landing Airfield 
 Landing Runway 
 Date 
 Aircraft Weight at take-off and landing 

 
To prevent the identification of individual flights, for this project BA translated the dates 
in both the event and measurement records to the first day of the month. Therefore it 
was only possible to identify the month and year on which a record was generated, and 
not the day.  
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2.2 Data Capture, Cleansing and Transformation 

The event and measurement data were supplied as “comma separated variable” files 
(CSV format). Since, in data mining terms, the volume of the data was relatively small, 
and the duration of this program was short, it was determined that the data cleansing 
and transformation would prove more efficient if the data was stored in Microsoft Excel. 
Excel is a convenient tool for data exploration, which involves searching for 
unbelievable values, potential outliers, correlations between measured parameters, 
missing values, etc. At a late stage in the analysis, the data was imported into 
Microsoft’s SQL Server using Data Transformation Services. Excel was still used as a 
convenient interface for executing the data mining analysis but the data was retrieved 
directly from the database using SQL queries formatted from within Excel. The use of 
SQL Server would normally be the preferred option when performing data mining since 
it provides a high level of data security, facilitates complex data queries, and assists in 
providing a record of the analysis. 
 
Overall, the integrity of the FDE data was good. There were some missing crew codes 
and upon inspection of the mining analysis results it became clear that the raising of 
ASRs was not always recorded in the database. As a result of this study the link 
between the ASR and FDE databases has been automated to improve the matching of 
records.  There was no transformation of the FDE data other than the extraction of two 
additional parameters for ‘date-month’ and ‘date-year’. 
 
The integrity of the FDM data was also good. Some records had one or more missing 
measurements that had been given an out-of-range code. For some parameters there 
was a lot of missing data due to the fact that these measurements were introduced 
after June 2002. Many of the measurement parameters are associated with particular 
flight phases and there is little relationship between parameters calculated in different 
flight phases. Therefore each analysis performed concentrated on different subsets of 
parameters. For this reason there was no generic cleanup of the FDM data. Instead, 
the cleanup was performed online during each analysis. This cleanup included 
removing records for which the relevant measurements were not available. Histograms 
for individual measurement parameters were produced as part of the data integrity 
checking process. These histograms often suggested that the measurement results 
could contain some noisy data (i.e. data at the extreme tails of a distribution). A 
decision was made to keep the ‘suspected noise data’ in the analysis to determine its 
nature and to identity it as either ‘true’ noise or ‘patterns of interest’.  
 
Additional parameters for ‘date-month’ and ‘date-year’ were extracted for each record 
in the FDM data. At a late stage in the analysis it was suggested that, in addition to 
searching for associations with landing location, identifying associations with a 
particular runway could provide useful additional information. There is no explicit 
recording of the runway used for landing in the FDM data, but it is possible to derive 
this given the landing airport and aircraft heading at touch down. Each flight was 
tagged with a string composed from the landing location and touch down heading. This 
heading could not be used directly since for a given location and runway it could vary 
by several degrees. Instead a simple rounding formula was applied on the assumption 
that this was sufficient to correctly associate most flights with runway usage.  
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3 Overview of the analysis Performed 
This project was a short duration proof of concept demonstration of the application of 
data mining techniques to airline flight data. Owing to the time constraints the analysis 
performed had to be of limited scope. It is important to stress that the objective was to 
perform example analyses to demonstrate the concept and potential benefits of data 
mining, rather than perform an exhaustive analysis of BA’s 777 and 744 event and 
measurement data.  
 
Smiths and BA had two review meetings during the analysis process. The project was 
an investigative exercise for both parties, with BA learning about the capabilities of the 
data mining algorithms, and Smiths increasing its knowledge of the information 
provided by the flight data events and measurements. There is clearly a need for future 
work to build on the experience gained from the exercise in order to produce an 
operational data mining capability.  Recommendations on the next steps towards the 
development of such a capability are presented in Section 7. 
 
In general terms, the focus of the analysis effort was to mine the event and 
measurement records to search for hidden patterns in the data, and associations with 
the documentary data fields listed in Section 2.1. In addition the following items were 
specifically examined:  
 

 The association of events and measurements with take-off and landing location 
and runway. 

 
 The association of events with crew codes. These codes are not currently 

included in the measurement records. 
 

 The association of events with aircraft registration. 
 

 Detecting date-related patterns and adverse trends. 
 

 The level of voluntary safety reporting (i.e. the raising of ASRs), and therefore 
associations between events and ASRs. 

 
The analysis of the event data included searches for all of the above associations. The 
measurement data should give a richer picture of operational variations than the 
events, and enable abnormalities to be highlighted even where no events are being 
generated. However, with less documentary data fields, the measurement analysis was 
limited to searching for associations with location/runway and date.  
 
Although the event and measurement analyses were performed separately, where 
relevant the findings from these analyses were correlated to provide the most complete 
picture of operational risks. In addition, the measurement data was assessed to 
determine what additional information this could provide on specific associations, and 
whether there was evidence to suggest that any event limits should be changed.  
 
In addition to the general focus of the analysis described above, some analysis effort 
was directed to answering specific questions raised at the BA/Smiths review meetings. 
Examples of such questions are; Is there any association between high energy or 
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unstable approaches and poor landings? Are there any significant patterns contained in 
the tails of measurement distributions? 
 
All three learning algorithms described in Section 1.3.1 (Decision Trees, Clustering and 
Association Rules) were applied to the event and measurement data. Where relevant, 
the different algorithm outputs were compared to identify the extent to which these 
identified common patterns, or whether a pattern was more clearly detected by one 
particular algorithm.   
 
The event records (from the FDE database) were originally analysed in isolation. As 
the FDE data only contained records of flights on which one or more events occurred, 
and did not include flights on which there had been no event, all results were 
conditioned on the basis of the events that had occurred, and not the occurrence rate 
of events in terms of the number of sectors flown. For example, the analysis could 
identify an abnormal number of occurrences of event E at location L in terms of all the 
events generated at that location, but not whether the occurrence rate of event E was 
abnormal in terms of the number of sectors flown to location L.   
 
At the request of BA, Smiths subsequently performed some additional analysis, linking 
the event and measurement records from the FDE and FDM databases to enable 
results to be conditioned on the basis of the number of sectors flown to different 
locations. The findings from these two approaches to result conditioning were then 
compared. The linking of the event and measurement records was hampered by the 
de-identification of the two data sets, (i.e. with dates only identified as months and 
years), so that it was not possible to directly link event and measurement records 
generated on the same flight. It is recommended that future data mining is performed 
with identified data, or if de-identified, data linked with an added unique key field. 
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4 Example results and findings 
This section presents example results and findings from mining of the event and 
measurement databases. The event analysis results are presented first, and are 
categorised according to the types of association found in the data. 
 
Data mining tools are normally used to build predictive models.  Therefore models of 
interest are usually restricted to those that reveal patterns with high values of support.  
When examining results the reader should keep in mind that the data mining tool is 
being used as an intelligent query tool to highlight patterns of interest and not for 
building reliable predictive models.  It is therefore valid to have patterns of interest with 
low values of support. 
 

4.1 Flight Data Events 

4.1.1 Date-Related Trends 

4.1.1.1 Changes to Analysis Configuration and Routes Operated 

A Decision Tree mining model identified date related trends in the rate of occurrence of 
events that were due to changes in the flight data analysis program. For example, the 
mining highlighted that event 40C (abnormal configuration, speedbrake with flap) 
ceased occurring on the 777 fleet in January 2003. On the 777 use of speedbrake with 
flap is allowed, therefore BA had discontinued the event on this fleet at that time.  
 
The Decision Tree shown in Figure 4-1 has identified the date of January 2003 as 
being the most significant in terms of changes in the occurrence of events in the 
approach phase. There were a large number of 40C events before that date, but none 
after, and the event has a strong association with the node representing the period 
before that date, with a lift value of 5.5. Some new events such as 06H (high energy at 
8nm) were also introduced at the same time, and Event 06H has a strong association 
with the node representing the period after that date, with a lift value of 6.8. 
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Figure 4-1: Decision Tree Identifying Date-Related Changes in Event Occurrences 

The mining of the flight data measurements also identified some date-related trends 
that were associated with changes in the routes flown by the fleet types (see Section 
4.2.1). Both these examples illustrate the fact that the mining is being performed on a 
dynamic data set, subject to changes as a result of changes to the flight data analysis 
being performed, and the routes being flown.  
 
These changes tended to mask the identification of trends which may be of interest for 
flight safety. Cleaning could be performed to remove data affected by known changes 
prior to mining, but this would be a relatively time consuming task. The dynamic nature 
of the data suggests that there should be a limit to the period over which historical data 
is included in any mining process. For the initial mining of the event data a three year 
period was used. For the additional analysis (see Section 4.1.4) this was limited to a 
two year period. 
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4.1.1.2 Weather Related Events in October 2002 

In a cluster model of 777 event data, the most significant features of one cluster were 
the presence of 44D events (GPWS windshear warning) with a lift of 24.0, and the 
dominance of the month of October 2002 with a lift of 18.7. Statistics for cluster 10 are 
presented in Figure 4-2. A GPWS warning should result in a go-around, so there is an 
association between events 44D and 24 (go-around from below 1000ft). A subsequent 
query of the event database confirmed that 11 of the 18 44D events on the 777 had 
occurred in the month of October 2002, and that the 11 events all occurred at the 
London airports of STN (Stansted), LHR (Heathrow) and LGW (Gatwick). The data 
mining is highlighting the effects of bad weather in the UK during the month of October 
2002. 
 

 

Figure 4-2: Single Cluster Event and Date Statistics  
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4.1.1.3 Apparent Change in the Raising of ASRs 

Through a link between BA’s FDE and BASIS ASR (Air Safety Report) databases, the 
events database is updated to include a record of whether or not an ASR was raised 
for each event.  The Cluster and Decision Tree analysis identified an apparent large 
drop in the raising of ASRs on both the 777 and 747 fleets around the period of June to 
December 2003. This was confirmed by a subsequent query of the event database. 
Figure 4-3 shows the monthly percentage of event 24s (Go-Around) that have an 
associated ASR record on the 744 fleet. All Go-Arounds should trigger the raising of an 
ASR, however it can be seen that there is almost a complete absence of ASRs 
between June 2003 and January 2004. 
 
There was in fact no drop off in aircrew’s raising of ASRs, and the missing ASR records 
in the FDE database were actually due to a temporary problem with linking of the ASR 
and FDE databases at the time BA introduced a new incident reporting system called 
eBASIS. Therefore the data mining is identifying a system problem, and not a reporting 
problem. 
 

744: Percentage of Event 24s with associated ASR
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Figure 4-3: ASR Records for Event 24 

British Airways was aware of the three issues highlighted above. However they do 
show that the mining tool is correctly identifying anomalies and thereby verify the 
accuracy of the tool and provide confidence in other reported results. 
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4.1.2 Associations Between Events, and Events and ASRs 

4.1.2.1 Event Associations 

Tables 4-1 and 4-2 present outputs from the Association Rules algorithm, highlighting 
the most significant associations between events on the 777 and 744 fleets 
respectively. 

Table 4-1: Significant Event Associations on 777 Fleet 

Events Confidence Support Lift 
48B → 44B 0.31 13 12.3 
19A → 50A 0.76 13 9.49 
44D → 24 0.67 10 7.65 

08A → 08B 0.27 33 6.52 
 
The following comments can be made on the 777 event associations: 
 
1 48B (reduced flap landing) – 44B (GPWS soft warning): This is a natural 

consequence of the GPWS requirement to generate a soft warning (“too low 
flaps”) if Land Flap is not selected by final approach. 

 
2 19A (long flare) – 50A (deep landing): There is a natural physical relationship 

between these events, in that a long flare will often result in a deep landing. 
 
3 44D (GPWS windshear warning) – 24 (Go-Around from below 1000ft): BA Flying 

Crew Orders require that a Go-Around should be flown following a GPWS 
windshear warning on approach unless previously briefed in accordance with 
Flying Crew Orders. Identifying negative associations between events, for 
example where a 44D event does not have an associated 24 event, would be a 
useful addition to the analysis capability and should be included in any 
implementation. 

 
4 08A (climb out speed high below 400ft) - 08B (climb out speed high 400 to 

1,000ft): This association shows that, in approximately one third of the 
occurrences of a high climb out speed in the first phase of flight, this has still not 
been corrected by the second phase. Many of these cases were related to take-
offs at low gross weight. 

Table 4-2: Significant Event Associations on 744 Fleet 

Events Confidence Support Lift 
06J → 06K 0.833 5 74.84 
56A → 44B 0.83 19 11.1 
19A → 50A 0.9 28 3.83 

 
The following comments can be made on the 744 event associations: 
 
1 06J (high energy at 1,000ft) – 06K (high energy at 500ft): This shows that crews 

are unable to reduce excess speed as often as would be desired.  What is 
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interesting is that this correlation does not show up on the 777 fleet.  This is  
probably due to differences in the way the final approach is flown. On the 777 the 
auto throttle is engaged to touchdown, whereas on the 744 when the auto pilot is 
disengaged the auto throttle is also disengaged. Therefore the events may be 
due to the greater degree of manual throttle control during the final approach on 
the 744. 

 
2 56A (deviation under glideslope) – 44B (GPWS soft warning): The GPWS is 

programmed to warn crew if they deviate significantly below the glideslope 
 

4.1.2.2 Associations Between Events and ASRs 

Tables 4-3 and 4-4 present outputs highlighting the most significant associations 
between events and ASRs on the 777 and 744 fleets respectively. 

Table 4-3: Associations Between Events and ASRs on 777 Fleet 

Events Confidence Support Lift 
 44D → ASR = R 0.67 12 4.82 
 24 → ASR = R 0.68 110 4.65 
 02A → ASR = R 0.53 10 3.81 
 49 → ASR = R 0.47 70 3.37 
 44C → ASR = R 0.43 9 3.1 
 23B → ASR = R 0.38 5 2.78 
 48B → ASR = R 0.36 15 2.58 
 46A → ASR = R 0.33 4 2.41 
 24A  → ASR = R 0.31 15 2.21 

 

Table 4-4: Associations Between Events and ASRs on 744 Fleet 

Events Confidence Support Lift 
 24 → ASR = R 0.6 224 3.65 
 46A → ASR = R 0.49 40 2.99 
 24A → ASR = R 0.47 27 2.87 
 49 → ASR = R 0.4 44 2.42 
 23C → ASR = R 0.34 21 2.1 
 44D → ASR = R 0.33 3 2.02 

 
The percentages of events with ASRs raised (as shown by the confidence statistic) 
indicated in the above tables will have been affected by the problems of capturing the 
ASR information in the FDE database that were discussed in Section 4.1.1.3. However, 
this analysis should be useful in reinforcing to flight crew the requirement to report 
certain events as ASRs.  The crew will have been aware of all of the above events 
except possibly 23C (high normal acceleration on landing) and all should be reported. 
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4.1.3 Associations Between Events and Specific Aircraft and Crews 

Table 4-5 shows significant associations between events and de-identified crew codes 
on the 744 fleet. Only one significant association was found, and this was that two crew 
were responsible for 13% of all the 09A events (high pitch rate on take-off) occurring on 
the 744 fleet. This information will be fed into the BA pilot events studies. 

Table 4-5: Associations Between Events and Crew on 744 Fleet 

Events & Crew Confidence Support Lift 
CODE = 09A → 20161 0.06 6 3.16 
CODE = 09A → 61481 0.07 7 3.16 

 
Table 4-6 shows significant associations between events and aircraft registrations on 
the 777 fleet. It can be seen that 14% of all the 23A events (high normal acceleration 
on ground) and 23D events (firm nose wheel touchdown) occurred on aircraft GVIIC. 
This information has been passed to BA engineering. 

Table 4-6: Associations Between Events and Aircraft Registration on 777 Fleet 

Events & A/C Reg Confidence Support Lift 
CODE = 23D → GVIIC 0.14 6 3.22 
CODE = 23A → GVIIC 0.14 12 3.1 

 

4.1.4 Associations Between Events and Airport Locations 

This is the most interesting result category, as factors associated with different airport 
locations cause the greatest operational variability and, as these are usually outside an 
airline’s control, they are the most difficult for a single airline to address. 
 
Results are presented separately for the 777 and 744 fleets, and also for the flight 
phases of (i) approach and landing, and (ii) take-off and climb. Two sets of results from 
the Association Rules algorithm are presented for each combination of fleet type and 
flight phase. As explained in Section 3, in the initial analysis lift values were normalised 
according to the rate of occurrence of events at different locations. These results are 
presented second. Additional analysis was then performed, linking the event and 
measurement data to enable lift values to be normalised according to the number of 
sectors flown to different locations. These results are presented first. All results are 
sorted according to the magnitude of the lift value. 
 

4.1.4.1 777 – Landing 

Tables 4-7 and 4-8 present Association Rules outputs for events occurring on the 777 
fleet in the flight phases of approach (A), landing (L) and Go-Around (G). 
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Table 4-7: 777 Landing Events, Lift Calculation Based on Number of Sectors Flown 

Flight Phase = A, L, G Confidence Support Lift 
CODE = 56B → TO = JED 0.21 6 38.04 
CODE = 56B → TO = ABV 0.17 5 19.77 
CODE = 23A → TO = BDA 0.12 6 17.06 
CODE = 45A → TO = GRU 0.38 5 14.52 
CODE = 43 → TO = DFW 0.10 7 7.36 
CODE = 06H → TO = DFW 0.08 6 6.14 
CODE = 48B → TO = ORD 0.21 6 6.06 
CODE = 06H → TO = PHX 0.07 5 5.62 
CODE = 50A → TO = DXB 0.13 11 5.47 
CODE = 06H → TO = MCO 0.07 5 4.70 
CODE = 40C → TO = GRU 0.12 10 4.49 
CODE = 23C → TO = DEN 0.06 5 4.35 
CODE = 50A → TO = AUH 0.09 8 3.54 
CODE = 06H → TO = BOS 0.08 6 3.29 
CODE = 43 → TO = IAH 0.08 6 3.22 
CODE = 06H → TO = ORD 0.11 8 3.17 
CODE = 23C → TO = IAH 0.08 7 3.15 
CODE = 23A → TO = EWR 0.10 5 3.00 
CODE = 23C → TO = ORD 0.08 7 2.38 
CODE = 43 → TO = ORD 0.07 5 2.03 
CODE = 40C, CODE = 43 → TO = LHR 0.63 5 2.03 

 

Table 4-8: 777 Landing Events, Lift Calculation Based on Number of Events 

Flight Phase = A, L, G Confidence Support Lift 
CODE = 56B → TO = JED 0.21 6 15.86 
CODE = 23A → TO = BDA 0.12 6 10.12 
CODE = 45A → TO = GRU 0.38 5 9.01 
CODE = 56B → TO = ABV 0.17 5 8.07 
CODE = 50A → TO = AUH 0.09 8 5.29 
CODE = 50A → TO = DXB 0.13 11 4.96 
CODE = 40C → TO = SAN 0.08 7 4.84 
CODE = 48B → TO = ORD 0.21 6 4.15 
CODE = 06H → TO = PHX 0.07 5 3.75 
CODE = 43 → TO = DFW 0.10 7 3.67 
CODE = 06H → TO = DFW 0.08 6 3.07 
CODE = 40C → TO = GRU 0.11 10 2.69 
CODE = 06H → TO = MCO 0.07 5 2.44 
CODE = 23A → TO = EWR 0.10 5 2.34 
CODE = 06H → TO = ORD 0.11 8 2.14 
CODE = 06H → TO = BOS 0.08 6 2.11 
CODE = 43 → TO = IAH 0.08 6 2.04 
CODE = 23C → TO = IAH 0.08 7 2.02 
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A number of the items in the above tables support what is already known about certain 
airports. A few examples are given below.  
 
When the sectors information is used in the lift calculation, the two highest lift values 
are for 56B (deviation above glideslope) events at JED (Jeddah) and ABV (Abuja). The 
prominence of these two locations in the occurrence of 56B events is confirmed by a 
specific query of BA’s FDE database (Figure 4-4). There are known issues at JED with 
alignment of the PAPIs and glideslope, and also with the visual aspects of the final 
approach to ABV. 
 

 

Figure 4-4: FDE Database Query for Event 56B 

All the 6H events (high energy at 8nm) are into USA airfields [e.g. PHX (Phoenix), 
MCO (Orlando), DFW (Dallas) and BOS (Boston)] and are due to ATC procedures. The 
high rate of occurrence of 50A events (deep landing) at DXB (Dubai) and AUH (Abu 
Dhabi) is expected as the airports have long runways and are on training routes. The 
48B (reduced flap landing) events at ORD (Chicago) and other busy airfields are as a 
result of the aircraft QRH checklist actions.  In the event of extended holding at these 
airfields a “low fuel” warning can be received and the QRH action is to make a flap20 
landing instead of the normal flap30. The 23C events (high normal acceleration at 
touchdown) at DEN (Denver) are probably caused by the high altitude of the airport.   
 

4.1.4.2 777 – Take-Off 

Tables 4-9 and 4-10 present Association Rules outputs for events occurring on the 777 
fleet in the take-off (T) and climb (C) phases. 
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Table 4-9: 777 Take-Off Events, Lift Calculation Based on Number of Sectors Flown 

Flight Phase = T,C Confidence Support Lift 
CODE = 08A → FROM = LTN 0.08 7 241.50 
CODE = 49 → FROM = EWR 0.32 7 9.51 
CODE = 08D → FROM = ORD 0.19 6 5.77 
CODE = 08A → FROM = ORD 0.10 9 2.95 
CODE = 08A → FROM = BOS 0.07 6 2.75 

 

Table 4-10: 777 Take-Off Events, Lift Calculation Based on Number of Events 

Flight Phase = T,C Confidence Support Lift 
CODE = 49 → FROM = EWR 0.32 7 4.12 
CODE = 23A → FROM = LHR 0.63 5 2.85 
CODE = 08D → FROM = ORD 0.19 6 2.38 

 
Again, some of the items in the table are expected, for example the prominence of 
event 49 (TCAS resolution advisory) at EWR (New York Newark) is due to the very 
busy airspace. 
 
Other items were unexpected, such as event 08A (climb out speed high below 400ft) at 
LTN (Luton), however this is confirmed by the result of a specific query of BA’s FDE 
database shown below (Figure 4-5). The item does not appear in the second table, and 
is only prominent in the first owing to the small number of sectors flown to/from LTN. 
These events are caused by low gross weight take-offs subsequent to diversions to 
Luton.   
 

 

Figure 4-5: FDE Database Query for Event 08A 
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Conversely an item in the second table, 23A events (high normal acceleration on 
ground) at LHR (London Heathrow) does not appear in the first table. All the events 
occurred in May/June 02 and were caused by the runway resurfacing program at LHR. 
 

4.1.4.3 744 – Landing 

Tables 4-11 and 4-12 present Association Rules outputs for events occurring on the 
744 fleet in the flight phases of approach, landing and Go-Around. 

Table 4-11: 744 Landing Events, Lift Calculation Based on Number of Sectors Flown 

Flight Phase = A, L, G Confidence Support Lift 
CODE = 58B → TO = SYD 0.50 4 21.14 
CODE = 21B → TO = JFK 1.00 6 13.56 
CODE = 06H → TO = SFO 0.30 25 13.20 
CODE = 42 → TO = JFK 0.89 8 12.05 
CODE = 06H → TO = MIA 0.23 19 8.17 
CODE = 56B → TO = SFO 0.16 16 6.96 
CODE = 19A, CODE = 50A → TO = SIN 0.23 6 5.06 
CODE = 56B → TO = SYD 0.12 12 4.98 
CODE = 19A → TO = SIN 0.21 6 4.70 
CODE = 56B → TO = HKG 0.11 11 4.59 
CODE = 06K → TO = JFK 0.33 6 4.52 
CODE = 24 → TO = MIA 0.11 21 3.97 
CODE = 42B → TO = JFK 0.29 4 3.87 
CODE = 56B → TO = MIA 0.09 9 3.19 
CODE = 50A → TO = BKK 0.07 20 2.65 
CODE = 44B → TO = JNB 0.07 6 2.57 
CODE = 50A → TO = HKG 0.06 16 2.47 
CODE = 24 → TO = SFO 0.05 10 2.32 
CODE = 50A → TO = JNB 0.06 16 2.28 
CODE = 24 → TO = JFK 0.17 32 2.27 
CODE = 06H → TO = LAX 0.06 5 2.24 
CODE = 44B → TO = NRT 0.05 5 2.24 
CODE = 24A → TO = JFK 0.15 5 2.05 

 

Table 4-12: 744 Landing Events, Lift Calculation Based on Number of Events 

Flight Phase = A, L, G Confidence Support Lift 
CODE = 58B → TO = SYD 0.50 4 17.06 
CODE = 21B → TO = JFK 1.00 6 8.97 
CODE = 42 → TO = JFK 0.89 8 7.97 
CODE = 19A → TO = SIN 0.21 6 6.30 
CODE = 06H → TO = SFO 0.30 25 4.09 
CODE = 56B → TO = SYD 0.12 12 3.98 
CODE = 06H → TO = MIA 0.23 19 3.15 
CODE = 56B → TO = HKG 0.11 11 3.05 
CODE = 06K → TO = JFK 0.33 6 2.99 
CODE = 06H → TO = LAX 0.06 5 2.62 
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CODE = 42B → TO = JFK 0.29 4 2.56 
CODE = 50A → TO = SIN 0.08 22 2.28 
CODE = 44B → TO = NRT 0.05 5 2.23 
CODE = 56B → TO = SFO 0.16 16 2.13 
CODE = 50A → TO = BKK 0.07 20 2.13 
CODE = 27A → TO = LHR 0.50 5 2.00 

 
Tables 4-11 and 4-12 highlight issues with JFK (New York John F Kennedy) airport. 
These become even clearer when all three years of event data are included, and the 
analysis is limited to the approach phase. This produces the results shown in Table 4-
13. For these results the lift value is calculated using event rates. 

Table 4-13: 744 Events in Approach Phase (3 Years of Data)  

Rule Confidence Support Lift 
CODE = 21B → TO = JFK 1.00 12 8.19 
CODE = 42 → TO = JFK 0.90 9 7.37 
CODE = 03M → TO = LHR 0.80 4 5.28 
CODE = 40C → TO = LHR 0.40 6 2.64 
CODE = 27A → TO = LHR 0.38 5 2.54 
CODE = 06H → TO = SFO 0.29 27 2.24 
CODE = 49 → TO = SFO 0.29 4 2.23 

 
All 12 of the 21B events (excessive bank angle 100ft to 500ft) occurred at JFK. 
Furthermore 90% (9) of event code 42 events (low on approach) also occurred at JFK.  
Both events are highlighting issues with the Canarsie approach, shown in Figure 4-6. 
The abnormality of this approach is also clearly illustrated in the results of the 
measurement data analysis presented in Section 4.2.2.2. 
 
The Carnarsie approach is designed to avoid overflying residential areas close to JFK 
and mitigate the effect of aircraft noise in these areas.  It requires a sharp right turn late 
in the approach.  The low on approach events are possibly caused by the requirement 
to obtain visual reference. 
 



Application of Smiths Aerospace Data Mining Algorithms to British Airways FDM Data 
 

 
 31 
 

 

Figure 4-6: Canarsie Approach 

Table 4-11 also highlights the high rate of occurrence of 06H events (high energy at 
8nm) at SFO (San Francisco) and MIA (Miami). This is not unexpected as ATC keep 
aircraft high on the approach and both airports are known for  rushed approaches.  
 

4.1.4.4 744 – Take-Off 

Tables 4-14 and 4-15 present Association Rules outputs for events occurring on the 
744 fleet in the take-off phase. 

Table 4-14: 744 Take-Off Events, Lift Calculation Based on Number of Sectors Flown 

Flight Phase = T,C Confidence Support Lift 
CODE = 23A → FROM = MAA 0.50 6 137.88 
CODE = 49 → FROM = PHL 0.22 5 19.49 
CODE = 10D → FROM = NRT 0.26 8 10.87 
CODE = 10D → FROM = NBO 0.13 4 7.57 
CODE = 08D → FROM = SFO 0.14 7 6.72 
CODE = 10D → FROM = JNB 0.13 4 5.24 
CODE = 08D → FROM = JFK 0.18 9 2.54 
CODE = 49 → FROM = JFK 0.17 4 2.41 
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Table 4-15: 744 Take-Off Events, Lift Calculation Based on Number of Events 

Flight Phase = T,C Confidence Support Lift 
CODE = 23A → FROM = MAA 0.50 6 17.21 
CODE = 10D → FROM = NBO 0.13 4 6.22 
CODE = 49 → FROM = PHL 0.22 5 5.24 
CODE = 10D → FROM = NRT 0.26 8 3.89 
CODE = 08D → FROM = JFK 0.18 9 2.46 
CODE = 08D → FROM = SFO 0.14 7 2.46 
CODE = 49 → FROM = JFK 0.17 4 2.33 
CODE = 10D → FROM = JNB 0.13 4 2.22 
CODE = 46A → FROM = LHR 0.64 9 2.09 

 
At the top of Tables 4-14 and 4-15 is the occurrence of 23A events (high normal 
acceleration on ground) at MAA (Madras), which is due to the condition of the runway. 
 
It is noted that all the significant associations for event 49 (TCAS resolution advisory) 
are with airports in the USA. These are PHL (Philadelphia), SFO and JFK for the 744 
fleet, and EWR for the 777 fleet. Again, this is related to the busy airspace. 
 

4.2 Flight Data Measurements 

4.2.1 Date-Related Trends 

As discussed in Section 4.1.1, data mining can detect date related trends caused by 
changes in the analysis and routes flown. Two examples are described below. 
 
A histogram of the MAXRODB2000 measurement (maximum rate of descent below 
2000ft) on the 744 fleet is shown in Figure 4-7. It can be seen that the parameter has a 
double distribution. 
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Figure 4-7: Histogram of Max Rate Of Descent Below 2000ft on 744 Fleet 
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Figure 4-8 presents a simple cluster model for this measurement, with cluster 1 
representing the major data distribution and cluster 2 the minor distribution. Cluster 2 is 
strongly associated with the year 2004 (with a high lift of 4.5), but not with the previous 
years, indicating a date related change.  The reason for the change is that the 
measurement was originally being incorrectly calculated, and the problem had been 
identified and corrected. 
 

 
 

Figure 4-8: Simple Cluster Model of Max Rate Of Descent Below 2000ft on 744 Fleet 
 
A second example relates to a Cluster model produced for the two climbout 
measurements of MNCLS35400 (minimum climb speed 35ft to 400 ft) and 
MIN4001500 (minimum climb speed 400ft to 1500 ft). Model outputs are shown in 
Figure 4-9. Cluster 9 contains the highest values of both measurements, and 
information on this cluster is shown on the lower left of the figure. The location 
information shows that two locations with very strong associations with cluster 9 are 
DOH (Doha) and BAH (Bahrain), with lifts of 72 and 11 respectively. The date 
information shows a strong increase in membership of this cluster in 2003 and 2004.  
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Figure 4-9: Cluster Model of Climb Out Speed Measurements on 744 Fleet 

A Naive Bayes model was produced to provide statistical information about the 
different airport locations. In Figure 4-10 the location of DOH has been selected and 
the date related information shows that the 744 began operating there in mid 2003 (the 
same was true for BAH). Therefore the date related trend associated with high climbout 
speeds (captured by cluster 9) was due to the start of operations on a new route.  
 
The explanation for the high climb out speeds at DOH and BAH is that aircraft shuttle 
between these two locations, and therefore a considerable number of the take-offs are 
made at low gross weights.  
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Figure 4-10: Naive Bayes Model Showing Airport Locations 

4.2.2 Trends with Airport Locations 

4.2.2.1 777 – Landing 

A Cluster model was produced for 777 approach energy measurements of VEGS500 
(energy minus Vref at 500ft) and VEGS1000 (energy minus Vref at 1000ft) (Figure 4-
11). There is a relatively strong correlation between the two measurements, and cluster 
8 captures the highest values of both measurements. The location information on the 
lower left of Figure 4-11 shows that this cluster has a strong association with SAN (San 
Diego), with a lift value of 9.9. A total of 187 of the 315 flights into SAN are associated 
with this cluster.  
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Figure 4-11: Cluster Model of Approach Energy Measurements on 777 Fleet 
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The left hand heat map in Figure 4-12 shows where the majority of the data is located 
and the right hand heat map shows the regions in which energy measurements would 
be assigned to cluster 8. This confirms the issue of rushed approaches into SAN. 
 

 

Figure 4-12: Heat Maps for all Data (left) and for Cluster 8 Only (Right)  

Additional Cluster and Decision Tree models were produced to include another 
approach energy measurement, ENGY8NM (energy minus Vref at 8 nm). The Decision 
Tree presented in Figure 4-13 shows that there is a strong association between very 
low energies at 8nm and flights to BGI (Barbados). BGI has the largest percentage of 
cases associated with the top most node of the tree, representing the lowest energy 
values (below –126), with a very high lift value of 21.7. The Cluster model also 
highlighted a group of low energy values associated with BGI. 
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Figure 4-13: Decision Tree Model of Energy at 8 nm on 777 Fleet 
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A histogram of the ENGY8NM measurement is shown in Figure 4-14. It can be seen 
that the distribution has an extended lower tail, with a small secondary peak at 
extremely low values of below –100. The data mining has shown that these are 
strongly associated with BGI. 
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Figure 4-14: Histogram of Energy at 8 nm on 777 Fleet 
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There is an event (6H) to detect high energies at 8nm, but BA would normally not pay 
attention to the extended tail of low energy values, assuming that some of the values 
may be caused by bad data. Prompted by the data mining results, BA used their 
existing FDM database to compare histograms of energy at 8nm for approaches to 
BGI, and for approaches to all other airports excluding BGI. The result is presented in 
Figure 4-15.  
 
As there are few ATC constraints on approach to BGI with very low air traffic activity 
there is a tendency for pilots to fly lower on the approach along the coastline.  
 

 

Figure 4-15: Histograms of Energy at 8 nm at BGI and All Other Airports 
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4.2.2.2 744 – Landing 

A Cluster model for the 744 approach energy measurements of VEGS500 (energy 
minus Vref at 500ft) and VEGS1000 (energy minus Vref at 1000ft) is shown in Figure 
4-16. Cluster 10 captures the lowest values of both measurements and also has the 
largest variance. The cluster is dominated by JFK, with a lift of 11.6, and contains a 
relatively small proportion (86 out of 2929) of all the flights into JFK.  
 

 

Figure 4-16: Cluster Model of Approach Energy Measurements on 777 Fleet 
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The left hand heat map in Figure 4-17 shows where the majority of the energy data is 
located. The right hand heat map shows the regions in which energy measurements 
would be assigned to cluster 10, and illustrates the high variance of this cluster. 
 

 

Figure 4-17: Heat Maps for All Data (Left) and for Cluster 10 Only (Right)  
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A Decision Tree model was produced for four approach energy related measurements, 
ENGY8NM (energy minus Vref at 8 nm), VEGS1000 (energy minus Vref at 1000ft), 
VEGS500 (energy minus Vref at 500ft), and CAS90SEC (airspeed at 90 seconds 
before touchdown). This again illustrates the low energy approaches at JFK, with the 
selected leaf node with low ENGY8NM and VEGS1000 values in Figure 4-18 being 
dominated by JFK, with 265 cases and a lift of 12.2. 
 

 

Figure 4-18: Decision Tree Model for Four Approach Energy Measurements on 744 Fleet 
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The abnormality of approaches to JFK was further highlighted by an analysis of 
maximum bank angles at low levels on the approach. Figure 4-19 presents a Decision 
Tree for the measurement MXBK100500 (maximum bank angle between 100ft and 
500ft). JFK dominates the lowest node displayed, for bank angles of greater than 18.8 
deg, with 174 cases and a lift of 12.2. From the histogram of the measurement 
presented in Figure 4-20, it can clearly be seen that these values are on the extreme 
upper tail of the distribution. The event analysis described in Section 4.1.4.3 identified 
that all 21B events (excessive bank angle 100ft to 500ft) occurred at JFK due to the 
Carnarsie approach. The findings from the measurement data provide further evidence 
to support the findings of the event analysis. 
 

 

Figure 4-19: Decision Tree Model for Bank Angle Between 100ft and 500ft on 744 Fleet 
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Figure 4-20: Histogram of Maximum Bank Angle Between 100 and 500ft on 744 Fleet 
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A Cluster model (Figure 4-21) was also produced for the measurements MXBK100500 
(maximum bank angle between 100ft and 500ft) and MXBKBL100 (maximum bank 
angle below 100ft). The measurement data has be overlaid on the cluster plot, the grey 
points show all landing locations and the red show landings at JFK. This airport 
dominated both clusters 9 and 10. 
 

 

Figure 4-21: Cluster Model of Bank Angle Measurements on 744 Fleet 
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The left hand heat map in Figure 4-22 shows that the majority of the measurement data 
is located in a region of low bank angles. The right hand heat map shows the regions in 
which bank angles would be assigned to cluster 10. It can be seen that cluster 10 is 
capturing occurrences of both high bank angle between 100ft and 500ft, and high bank 
angle below 100ft. Interestingly, the FDE database contained no occurrences of event 
21B (excessive bank below 100ft). Therefore in this case the measurement data is 
providing more information on bank angles at this very low level, and there may be 
case for lowering the current event limit.  
 

 

Figure 4-22: Heat Maps for All Data (Left) and for Cluster 10 Only (Right)  

To confirm that the high bank angles were associated with the Canarsie approach a 
second cluster model was produced, including runway information in the data set. 
Using the original data set, cluster 10 contained 106 approaches into JFK, with a lift of 
7.4. When runway heading was included, cluster 10 contained 100 approaches landing 
on runway 13 (the Canarsie approach), with the lift increasing to 36.2. Therefore of the 
106 approaches to JFK with high bank angles at low levels, 100 involved landings on 
runway 13. This runway also dominated the approaches to JFK contained in cluster 9, 
as illustrated by Figure 4-23. Clusters 9 and 10 account for 98% of all flights that used 
runway 13 at JFK. 
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Figure 4-23: Histograms for Approaches Landing on Different Runways at JFK Contained 
in Cluster 9 (Left) and Cluster 10 (Right)  

A Cluster model was produced to analyse flap speeds on the approach (flap A, B, D 
and E). Figure 4-24 shows the airports associated with cluster 17, and also the region 
of high flap A and B speeds included in this cluster. The results indicate that a higher 
than expected number of approaches into LAX (Los Angeles) have associated high flap 
speeds, with a lift of 5.4. ATC procedures at LAX often require a long straight-in final 
approach at high speed with continuous descent, and sometimes cause early flap 
selection. 
 

 

Figure 4-24: Cluster Model of Flap Speeds on Approach 
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4.2.2.3 744 – Take-Off 

Section 4.2.1 on date related trends has already discussed the association of high 
climb out speeds with the locations of DOH (Doha) and BAH (Bahrain), due to the high 
percentage of take-offs  at low gross weights. 
 
An analysis of take-off pitch attitudes identified the effect of altitude on aircraft take-off 
performance. Figure 4-25 shows cluster distributions for the measurements 
MXTOFPCHAT (maximum pitch attitude during take-off) and TOFFALT (take-off 
altitude). Cluster 5 captures a relatively tight grouping of take-offs with low maximum 
pitch attitudes and a high airport altitude. 99% of the cases assigned to this cluster are 
for the high altitude airports of JNB (Johannesburg) and NBO (Nairobi), with very high 
lifts of 23.8 and 23.9 respectively. The analysis is identifying normal aircraft 
performance variation, with a reduction in performance at high altitudes. 
 

 

Figure 4-25: Cluster Model of Pitch Attitude on Take-Off and Airport Altitude 
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5 Assessment of Results by British Airways 
The analysis conducted during this proof-of-concept project delivered useful and 
intriguing results.  
 
The data mining tool highlighted many items of which British Airways was already 
aware from using its existing analysis techniques. This is not a criticism, but is hard 
evidence that the tool is correctly identifying relationships of interest.  In turn this gives 
confidence that other relationships detected are worth investigating.  Of course if 
previous analysis had not been carried out on the data then these items would be 
perceived to have a greater safety value.  In addition British Airways is not aware of 
any known issues that should have been identified by the tool and were not. 
 
The data mining tool unearthed many interesting patterns and relationships at what 
could be called a “second level” down.  These had not previously been detected using 
existing analysis techniques and, if they had, it is likely that they would have been 
dismissed as noise or random groupings.  The software provided quantitative 
information showing the degree of confidence that there was something non-random 
occurring. 
 
The tool was adept at detecting date related changes.  This would prove useful for 
monitoring the British Airways operation for unintended consequences as a result of 
changes to operational procedures.  It would also prove useful for monitoring changes 
to the existing Flight Data Analysis software. 
 
The tool was effective in analysing the FDM database for patterns where the maximum 
parameter level recorded did not exceed the pre-determined event level (e.g. maximum 
bank angle below 100ft).  It could also be used on the FDM database to aggregate data 
and provide a ranking of airports from best to worst. 
 
The data mining tool would be useful for providing routine monthly management 
reports using specially created models running on the FDM and FDE databases.  It 
could probably replace some of the existing analysis process with a more efficient 
method, thereby freeing up scarce expertise to focus on the results rather than the 
process. It can therefore be used to complement and improve existing processes. 
 
The tool would enable more in-depth investigation into individual pilot handling events.  
It would more easily identify if any pilots have recurring handling characteristics outside 
the fleet norm. 
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5.1 Observations on Data Mining Tool and Suggestions for Improvement 

The tool seemed easy to use once familiarity was gained with the various analysis 
configuration settings and outputs.  A new model run took about ten minutes to set up 
and about twenty minutes to analyse the results for interesting patterns or 
relationships.  A repeat of the same model on different data reduced these numbers to 
two and fifteen minutes respectively.  Changes to the user interface for the input 
selections and the output displays could be made which would reduce the set up and 
analysis times.  For example more information with regard to location analysis, giving 
percentage of total database sectors and runway heading would aid results analysis.  
None of these changes are particularly difficult to make. The mining models generally 
took less than a minute to run on a state of the art PC. 
 
As suggested in previous sections of the report, analyses looking for negative as well 
as positive associations would prove valuable.  Because of the need to preserve 
confidentiality of the event and measurement data going outside British Airways, the 
date information was shortened to month and year only, removing the ability to connect 
records between the FDE and FDM databases.  This ability should be restored for any 
internal analysis within BA. Crew identifiers would be a useful adjunct to the FDM 
documentary data fields and analysis capabilities would be increased if these are 
added to the FDM data set. 
 

5.2 Assessment of the Tool’s Value to Flight Safety Analysis 

The tool provided an ability to unearth “second level” items of interest in the FDE 
database that had previously not been detected.  It also provided new insights into the 
FDM data that complemented the information derived from FDE.  By running preset 
mining models on a regular basis the data mining tool should generate useful 
management information and provide an overall monitor of the British Airways 
operation to detect any undesirable changes.  If used for the routine analysis of the 
FDE database the tool could replace some of the existing manual analysis processes 
with a more efficient method. However, in general, the data mining tool would be used 
to complement rather than replace the existing event and measurement data analysis. 
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6 Conclusions 
This Federal Aviation Administration sponsored data mining proof-of-concept 
demonstration has been a very interesting and worthwhile project.  The results 
obtained have clearly demonstrated the benefits of utilising data mining tools within an 
airline Flight Data Monitoring (FDM) program.   
 
Data mining algorithms have been applied to databases containing three years of flight 
data events and two years of measurements from British Airways’ FDM program on its 
Boeing 777-200 and 747-400 fleets. Although some patterns detected were due to 
changes in the flight data analysis, the quality of the databases was good and enabled 
valid and meaningful results to be obtained. 
 
Mining of the event data identified date-related trends, associations between different 
events, and significant associations between events and take-off and landing locations, 
crew codes, aircraft registrations and the raising of Air Safety Reports.  
 
Mining of the measurements also identified date-related trends, and significant 
associations between groups of measurements and take-off and landing locations. The 
measurement analysis provided additional information to support the findings of the 
event analysis, and in some cases identified associations not present in the event data.  
 
As was expected, the most obvious findings from the data mining related to issues that 
were already known to British Airways, which operates a very mature and 
comprehensive FDM program. These “primary” findings served to validate the tool and 
provide confidence in its results.   
 
However, the data mining tool also unearthed many interesting patterns and 
associations at what could be called a “second level” down which had not previously 
been detected using existing analysis techniques.  Some of these were in the extreme 
tails of measurement data distributions, which previously may have been dismissed as 
noise or random groupings. 
 
It is concluded that data mining can provide new insights into patterns and associations 
within databases of flight data events and measurements. Running preset mining 
models on these databases on a regular basis would provide airlines with useful 
additional safety management information. It should also improve the efficiency of the 
flight data analysis process. 
 
Both Smiths Aerospace and British Airways believe that the proof-of-concept study 
demonstrates that data mining has a very useful role to play in Flight Data Monitoring, 
and will be a valuable complement to existing analysis tools. There is clear potential for 
data mining tools to become an integral part of the suite of tools used in an airline FDM 
program.     
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7 Recommendations – possible next steps 
This project was a short duration proof of concept demonstration of the application of 
data mining techniques to airline flight data. There is clearly a need for future work to 
build on the experience gained from the exercise in order to produce an operational 
data mining capability. Developing such a capability would require the following steps: 
 
1 Perform a more comprehensive data analysis to optimise the mining process 

(including selection of input data and algorithms) to provide the most useful 
outputs for the airline. There is a need to optimise: (i) The selection of 
complementary FDE and FDM parameters to provide the best overall picture of 
potential operational risks; and (ii), the application of complementary data mining 
algorithms to provide the clearest picture of anomalous trends.   

 
2 Develop a standard set of data mining models, which could then be run routinely 

by the airline with minimal effort. Developing a standard set of mining models is 
important as this will minimise analysis workload, and also facilitate trend 
monitoring by enabling comparison of consistent model outputs at different 
periods of time. 

 
3 Configure the data mining tool to interface to the databases of events and 

measurements, automatically run a set of analyses, and present results in the 
most meaningful format to the airline. This step is one of tailoring the data mining 
tool to the specific requirement of airline Flight Data Monitoring programs. Smiths’ 
adoption of an open standard data mining framework linked to third party tools is 
designed to facilitate this approach, enabling the production of a tool well 
matched to airline requirements. Alternatively some airlines may wish to obtain 
new analysis capabilities though the use of a data mining service, and Smiths 
can also support this approach.  

 
In parallel with the direct development of a data mining capability described above, 
there is a need for airlines to determine how to obtain the maximum benefits from data 
mining by: 
 
1 Optimising the information provided by their current Flight Data Monitoring 

programs. For example, the proof of concept demonstration identified that 
additional benefits would be obtained if BA’s FDE and FDM records could be 
directly linked, and if additional documentary information such as pilot codes 
could be added to the FDM data. 

 
2 Determining how best to disseminate the new types of information provided by 

data mining both internally and externally, and how to best utilise this information 
in the closed loop process of identifying, assessing and addressing operational 
risks. 
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APPENDIX A 
 
 
 
Table A1 presents a list of the Flight Data Events implemented on BA’s 777 and 744 fleets, and the Flight Data Measurements that are 
related to these events. 
 
Table A2 presents a list of additional Flight Data Measurements that do not have an associated event. 

Table A1: BA 777 & 744 Events and Associated Measurements 

Event 
Code Description Measurement Description 

01A VMO Exceedance MXVMO MAX VMO 
02A MMO Exceedance MXMMO MAX MMO 
03A Flap Placard Speed Exceedance MXFLPALND CAS MINUS FLAP SPEED (FLAP 1) LANDING 
  MXFLPBLND CAS MINUS FLAP SPEED (FLAP 5) LANDING 
  MXFLPCLND CAS MINUS FLAP SPEED (FLAP 15) LANDING 
  MXFLPDLND CAS MINUS FLAP SPEED (FLAP 20) LANDING 
  MXFLPELND CAS MINUS FLAP SPEED (FLAP 25) LANDING 
  MXFLPFLND CAS MINUS FLAP SPEED (FLAP 30) LANDING 
  MXFLPATO CAS MINUS FLAP SPEED (FLAP 1) T/O 
  MXFLPBTO CAS MINUS FLAP SPEED (FLAP 5) T/O 
  MXFLPCTO CAS MINUS FLAP SPEED (FLAP 15) T/O 
  MXFLPDTO CAS MINUS FLAP SPEED (FLAP 20) T/O 
  MXFLPETO CAS MINUS FLAP SPEED (FLAP 25) T/O 
03G Gear Down Speed Exceedance nil  
03I Gear Up Selected Speed Exceedance nil  
03J Gear Down Selected Speed Exceedance CASGRSELD CAS AT GEAR SELECTED DOWN 
03M Airspeed low for configuration nil  
4 Exceedance of Flap/Slat Altitude nil  
5 Exceedance of Max Operating Altitude nil  
06A Approach Speed High Within 90 secs of T/D CAS90SEC CAS AT 90SECS BEFORE T/D 
06B Approach Speed High Below 500ft AAL CASATH500 CAS MINUS VREF AT 500FT 
06C Approach Speed High Below 50ft AGL CASATR30 CAS MINUS VREF AT 30FT 
06H High energy at 8nm MXENGY8NM ENERGY AT 8NM VREF 
06J High Energy (knots equivalent) at 1000' AAL VEGS1000 ENERGY MINUS VREF AT 1000FT 
06K High Energy (knots equivalent) at 500' AAL VEGS500 ENERGY MINUS VREF AT 500FT 
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Event 
Code Description Measurement Description 

07A Approach Speed Low Within 2 mins of T/D nil  
07B Approach Speed Low Below 25ft Radio CASTDOWN CAS AT TOUCHDOWN 
  CASATR30 CAS MINUS VREF AT 30FT 
08A Climb Out Speed High Below 400ft AAL MNCLS3540 MIN CLIMB SPEED 35FT TO 400FT 
08B Climb Out Speed High 400' to 1000' AAL MIN400150 MIN CLIMB SPEED 400FT TO 1500FT 
08C Climb Out Speed Low 35' AGL to 400' AAL MNCLS3540 MIN CLIMB SPEED 35FT TO 400FT 
08D Climb Out Speed Low 400' to 1500' AAL MIN400150 MIN CLIMB SPEED 400FT TO 1500FT 
09A Inst Pitch Rate High on Take-Off TOFFPRM INSTANTANEOUS PITCH RATE AT T/O 
09B Average Pitch Rate High TOFFPRA  AVERAGE PITCH RATE AT T/O 
10A Unstick Speed High TOFFSPEED CAS MINUS V2 
10B Unstick Speed Low TOFFSPEED CAS MINUS V2 
10C Tyre Limit Speed High at Take-Off nil  
10D Slow acceleration on take-off TOACC SECONDS FROM 80KTS TO 120KTS T/O 
11A Elev During T/O run nil  
19A Long Flare TIME25TD TIME 25 FT TO T/D 
19B Short Flare TIME25TD TIME 25 FT TO T/D 
20A Pitch Attitude High During Take-Off MXTOFPCHA MAX PITCH DURING T/O 
20B Abnormal Pitch Landing (High) MXPTCHLAN MAX PITCH DURING LANDING 
  LDGINSTPITCH MAX INST PITCH DURING LANDING 
20C Abnormal Pitch Landing (Low) nil  
20G Excessive Pitch Attitude nil  
21A Excessive Bank below 100ft AGL MXBKBL100 MAX BANK ANGLE BELOW 100FT 
21B Excessive Bank 100' AGL to 500' AAL MXBK10050 MAX BANK ANGLE 100FT TO 500FT 
21C Excessive Bank above 500ft AAL MXBKABV50 MAX BANK ANGLE ABOVE 500FT 
21D Excessive Bank near Ground (Below 20ft AGL) MXBKNRGRN MAX BANK ANGLE BELOW 25FT 
22C Slow climb to 2500ft AAL after T/O nil  
22D Initial Climb Hght Loss 20' AGL to 400' AAL nil  
22E Initial Climb Hght Loss 400' to 1500' AAL nil  
22F Excessive Time to 1000ft AGL After Take-Off TIMTO1000 TIME TO 1000FT 
22G High Rate of Descent Below 2000 ft AGL MXRODB2000 MAX ROD BELOW 2000FT 
22H Altitude deviation nil  
23A High Normal Acceleration on Ground MXNMLGRND MAX NMLA ON GROUND 
23B High Normal Acceleration in Flight MXNMLAIR MAX NMLA AIR 
23C High Normal Acceleration at Landing MXNMLALAN MAX NMLA LANDING 
23D Firm nose wheel touchdown nil  
24 Go-Around from below 1000ft. nil  
24A Go-Around from above 1000ft nil  
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Event 
Code Description Measurement Description 

24C Inadvertent TOGA activation nil  
26 Abandoned Take-Off nil  
27A Rudder deflection above 1000ft AAL MXRUDA1000 MAX RUDDER ABOVE 1000FT 
27B Rudder reversal below 1000ft AAL nil  
40C Abnormal Configuration. Speedbrake with flap nil  
41 Taxi without take-off flap set nil  
42 Low on Approach (Between 3 & 2 mins of T/D) nil  
42B Too high at 1 minute to touchdown HAAL60TD HEIGHT AT 60 SECS TO T/D 
43 Spdbrakes out below 1000' AAL MNHSBG43A MINIMUM HT SPEEDBRAKE USED ON APPROACH 
44A GPWS Hard Warning nil  
44B GPWS Soft Warning nil  
44C GPWS False Warning nil  
44D GPWS Windshear Warning nil  
45A Reduced Lift Margin   
46A Stick Shake nil  
46B False Stick Shake nil  
47 Early Configuration Change After T/O (Flap) CONFIGHT HEIGHT OF FIRST FLAP SELECTION AFTER T/O 
48A Late Land Flap (Not in posn below 500 ft AAL) HALLSTFPCH HEIGHT AT LAST CHANGE IN FLAP 
48B Reduced Flap Landing nil  
48D Flap Load Relief System Operation nil  
49 TCAS Resolution Advisory nil  
50A Deep Landing XTD LANDING DISTANCE PAST G/S AERIAL 
50C Short Landing XTD LANDING DISTANCE PAST G/S AERIAL 
51A Gear Not Locked-Down at 1000FT AAL HAALGRDN HEIGHT AT GEAR DOWN 
56A Deviation Under Glideslope (below 600ft AAL) NEGGSDEV MAX NEG GS DEVIATION BETWEEN 600FT AND 150FT 
56B Deviation Above Glideslope (below 600ft AAL) POSGSDEV MAX POS GS DEVIATION BETWEEN 600FT AND 150FT 
56C Deviation from Localiser Below 600ft nil  
58B Excess Tailwind on Landing MXTAILWIND MAX TAIL WIND 
75A Low power on approach below 500ft MINN1 MINIMUM N1 500FT TO 50FT 
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Table A2: Additional Measurements 

Measurement Description 
SERIALNO SERIALNO 
REPLAYDATE REPLAY DATE 
ACREG A/C REGISTRATION 
ACTYPE A/C TYPE 
DEPDATE DEP DATE 
REG REGISTRATION 
DEPAP DEP AIRPORT 
LNDAP LND AIRPORT 
DEPAPTYPE DEP AIRPORT TYPE 
LNDAPTYPE LND AIRPORT TYPE 
GMTTO GMT T/O 
GMTLND GMT T/D 
FLLENGTH FLT DURATION 
VARIANT A/C VARIANT 
FLNO FLT NUMBER 
TOFFAUW T/O WEIGHT 
TOFFRUNWA T/O RUNWAY 
TOFFALT T/O ALTITUDE 
TOFFTEMP T/O TEMP 
TOFFVR T/O VR 
TOFFV2 T/O V2 
CASATH1000 CAS MINUS VREF AT 1000FT 
LANDAUW LANDING WEIGHT 
LANDRUNWA LANDING RUNWAY 
LANDALT LANDING ALT 
LANDVREF LANDING VREF 
TIME200KT TIME FROM 200KTS TO T/D 
FUELTD TOTAL FUEL ON LANDING 
TIME100TD TIME FROM 100NM TO T/D 
FUELD100TD FUEL USED FROM 100NM TO T/D 
TODIST T/O DISTANCE FROM START OF ROLL TO UNSTICK 
TIMEFFLTD TTIME SINCE FLAPS CLEAN TO T/D 
LNDRES LANDING WEIGHT * 1000 
TOINSTPITCH INSTANTANEOUS PITCH AT T/O 
TAXITIME TAXI TIME 
TAXIFUEL TAXI FUEL 
MXROTPOS ROTATION SPEED REL TO V2 
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