**APPENDIX 3-B** 

Airplane Upset Recovery Briefing



# **Airplane Upset Recovery**

# **Causes of Airplane Upset**



# **Airplane Upset Recovery**



#### **Upset Recovery Training Objectives**

- To increase the pilot's ability to recognize and avoid upset situations.
- To improve the pilot's ability to recover control, if avoidance is not successful.

#### **Upset Recovery Training Will Review**

- The causes of airplane upsets
- Swept-wing airplane fundamentals
- Airplane upset recovery techniques

# What is "Airplane Upset?"



### **Causes of Airplane Upset Incidents Are**

- Environmentally induced
- Systems-anomalies induced
- Pilot induced
- A combination of all three

# **Environmental Causes of Airplane Upset Include**

- Turbulence
- Clear air turbulence
- Mountain wave
- Windshear
- Thunderstorms
- Microbursts
- Wake turbulence
- Airplane icing

#### **Turbulence Is Primarily Caused by**

- Jet streams
- Convective currents
- Obstructions to wind flow
- Windshear

# Clear Air Turbulence (CAT) Is Characterized by Marked Changes in

- Pressure
- Temperature
- Wind direction
- Wind velocity

#### **Mountain Wave Turbulence**



# Windshear



#### Thunderstorms



#### Microbursts



### Wake Turbulence



# **Airplane Icing**



### System-Anomalies Induced Airplane Upsets Primarily Involve

- Flight instruments
- Autoflight systems
- Flight controls and other anomalies

#### **System-Anomalies Induced Airplane Upsets**



# **Flight Instruments**



# **Autoflight Systems**



#### Flight Control and Other Anomalies



### **Pilot-Induced Causes of Airplane Upset Include**

- Instrument misinterpretation or slow cross-check
- Inattention and distraction from primary cockpit duties
- Vertigo or spatial disorientation

#### **Instrument Cross-Check**



### Distraction



#### **Vertigo or Spatial Disorientation**



# **Improper Use of Airplane Automation**



### **Causes of Airplane Upsets—Summary**

**1. Environmental:** 

Turbulence, CAT, mountain wave, windshear, thunderstorms, microbursts, wake turbulence, and airplane icing

2. Systems anomalies:

Flight instruments, autoflight systems, and flight control anomalies

3. Pilot induced:

Instrument cross-check, inattention and distraction from primary cockpit duties, vertigo or spatial disorientation, and improper use of airplane automation

### Swept-Wing Airplane Fundamentals Will Overview

- Flight dynamics
- Energy states
- Load factors
- Aerodynamic flight envelope
- Aerodynamics

# **Flight Dynamics**



#### The Three Sources of Energy Available to the Pilot Are

- **1.** Kinetic energy, which increases with increasing speed
- 2. Potential energy, which is approximately proportional to altitude

### **Energy Relationships**



#### Load Factors—Four Forces of Flight



#### Load Factors—Airplane in Pull-Up



#### **Aerodynamic Flight Envelope**



# **Angle of Attack**


#### **Stalls**





#### **Trailing Edge Control Surfaces**



# **Spoiler Devices**



#### Trim



#### Lateral and Directional Aerodynamic Considerations

The magnitude of coupled roll-due-to-sideslip is determined by several factors, including

- Wing dihedral effects
- Angle of sideslip
- Pilot-commanded sideslip

## Wing Dihedral Angle



# **Angle of Slideslip**



#### High-Speed, High-Altitude Characteristics



#### **Static Stability**



**Stable** When ball is displaced, it returns to its original position.



**Unstable** When ball is displaced, it accelerates from its original position.



**Neutral** When ball is displaced, it neither returns, nor accelerates away—it just takes up a new position.

#### Maneuvering in Pitch



#### **Mechanics of Turning Flight**



#### Lateral Maneuvering—Roll Axis



#### Lateral Maneuvering—Flight Dynamics



#### **Directional Maneuvering—Yaw Axis**



#### Flight at Extremely Low Airspeeds



# Flight at Low Airspeeds and Thrust Effects



#### Flight at Extremely High Speeds



# **Summary of Swept-Wing Fundamentals**

- Flight dynamics: Newton's laws
- Energy states: kinetic, potential, and chemical
- Load factors: longitudinal, lateral, and vertical
- Aerodynamic flight envelope: operating and demonstrated speeds
- Aerodynamics: the relationship of angle of attack and stall

# **Airplane Upset Recovery**



#### Situational Awareness During an Airplane Upset

"Recognize and confirm the situation" by the following key steps:

- Communicate with crew members
- Locate the bank indicator
- Determine pitch attitude
- Confirm attitude by reference to other indicators

## The Miscellaneous Issues Associated With Upset Recovery Have Been Identified by

- Pilots who have experienced an airplane upset
- Pilot observations in a simulator-training environment
- And they are associated with
  - The startle factor
  - Negative g force
  - Full control inputs
  - Counter-intuitive factors

#### **Startle Factor**



# **Negative G Force**



## **Use of Full Control Inputs**



#### **Nonintuitive Factors**



# **Airplane Upset Recovery Techniques Will Include a Review of the Following Airplane Upset Situations:**

- Nose high, wings level
- Nose low, wings level
- High bank angles:
  - Nose high
  - Nose low
- And a review of recommended upset recovery techniques based on two basic airplane upset situations:
  - Nose high
  - Nose low

#### **Airplane Upset Recovery Techniques**

- Stall characteristics
  - Buffeting
  - Lack of pitch authority
  - Lack of roll control
  - Inability to arrest descent rate

Recognize and confirm the situation

• Disengage autopilot and autothrottle













Recognize and confirm the situation

Figure 3-B.70



• Disengage autopilot and autothrot-



#### Recover from stall, if necessary
#### Nose-Low, Wings-Level Recovery Techniques Recover to Level Flight



Apply noseup elevator

• Apply stabilizer trim, if necessary

# **Nose-Low, Wings-Level Recovery Techniques**



Adjust thrust and drag, as necessary











• Reduce the angle of attack, if necessary

Figure 3-B.79







- Recognize and confirm the situation
- Disengage autopilot and autothrottle
- Apply as much as full nosedown elevator

- Use appropriate techniques:
  - Roll (adjust bank angle) to obtain a nosedown pitch rate
  - Reduce thrust (underwing-mounted engines)

- Complete the recovery:
  - Approaching the horizon, roll to wings level
  - Check airspeed; adjust thrust
  - Establish pitch attitude



- Recognize and confirm the situation
- Disengage autopilot and autothrottle
- Recover from stall, if necessary

• Roll in the shortest direction to wings level:

 Bank angle to more than 90 deg; unload and roll

- Recover to level flight
  - Apply noseup elevator
  - Apply stabilizer trim, if necessary
  - Adjust thrust and drag, as necessary