New materials: An unavoidable evolution Challenges and opportunities SASS Singapore 28th March 2018

Xavier JOLIVET Director of Flight Safety Safety Enhancement Guillaume FERRER Embodiment Industrialisation Manager Composite repair development

The challenge for aviation: sustainable growth

Page 2

History of a continuous fuel burn reduction

AIRBUS

2020

2010

Structural Composites in Airbus Aircraft Family

Advanced composites

Improve fuel efficiency

By achieving weight saving

While optimizing design & manufacturing constraints

Structural Composites in A350 Aircraft

Structural Composites in A350 Aircraft

A350 XWB

>90% of the wet surface is in Carbon

Industry Records:

Wing: 33m length in 1 segment

Fuselage: 1,6mm thick (typical area)

- A350XWB Keel beam panel ~15m long
- Beam and lower fuselage panel integrated
 - AIRBUS

Certification standards & Testing approach

- Regulations and certification criteria are performance based requirements
- Specificity of composite properties are taken into account by means of Acceptable Means of Compliance (AMC 20-29 for EASA and AC 20.107B for FAA) and cover following areas:
 - Response or resilience to accidental damage (lightning strikes, bird strikes, in flight hail, fire).
 - Structural substantiation of CFRP materials & manufacturing processes variability
 - Assessment of damage to aircraft structure.
 - Definition of relevant maintenance program and repair methods.
 - Training standards and product awareness...
- Airbus standards are typically exceeding the regulatory requirements

→ Extensive use of established Standard to develop at least equivalent safety level:

- Building block approach for Tests
- Advanced numerical computing methods

Certification standards & Testing approach - Reliability of analysis is Key

From Physical tests to Simulation models

Optimize design

Establish high reliability

Secure large test scale & Manufacturing ramp-up

All physical tests (Details, Sub-component to demonstrators) are supported by computed models

- Extensive measurement on all test levels
- Verified predicted performance and understand combined load Objective: calibrate methods & computing models
 - Run predictions 'Virtual testing' in anticipation to full scale test demonstrators and full aircraft (for static and fatigue tests)

Certification standards & Testing approach - Reliability of analysis is Key

3 different area with refined modelling:

- models running separately ۲
- Linear and Non Linear prediction ullet
- Risk mitigation, secure static test campaign \checkmark

Example: Virtual Full-Scale Static Test 68 million degrees of freedom 24 Load cases

Certification standards & Testing approach – Full scale fatigue test

Nose Fuselage

Toulouse, France

Fatigue Campaign Q4/2013 to Q4/2015

Center Fuselage

Erding, Germany

Fatigue Campaign Q2/2014 to Q2/2016

Rear Fuselage

Hamburg, Germany

Fatigue Campaign Q1/2014 to Q3/2015

Focus on fire cases – requirements

In-flight fire:

- survivability > 3h
 - in consideration of active
 - fire means
 - \leq 60 KW/m², 1,5 min
 - Flame propagation

Ground fire:

 survivability > 5 min in consideration of intact fuselage 180 KW/m², 5 min
Fuselage burn through

Flame propagation fire source

AIRBUS

Ground fire source

➔In-flight fire requirements are addressed to all CFRP fuselage structure parts. Burn through requirement applies to the lower half of the shell only

Focus on fire cases – results

- Composite fuselage structure do not sustain combustion and do not favor the spread of fire
- Composite fuselage structure exhibit longer burn-through times than aluminium structure
- Composite fuselage structure does not transfer heat to the same degree as aluminium structure
- No fire propagation have been detected

Design for robustness & Maintainability ACCIDENTAL DAMAGE METHODOLOGY: (refer to AC 20-107B)

.

Anticipate impact damage occurrence

Develop design criteria

Consolidate design to ensure maintenability equivalent to A330

- Develop survey from in service damage report (cumulated experience from > 2500 reports)
- Address all kind of threat/damage, hail, stone, lightning, ground equipment.... calibrated for tests by low speed impactors, impact with and without bumpers..
- Aircraft zoning to support A350XWD development with regards to impact resistance & maintainability

Damage distribution of the complete aircraft

Number of impacts by zone

wings

Structure Robustness to routine damage

 Allowable Damage coverage focuses on Routine damage on Prone to Damage Areas

Allowable Damage Limits (ADL) defined in these areas to enable A/C dispatch

The structure can sustain certification loads with such damage without need for repair

In-service damage since EIS (Entry into Service)

Examples of Lightning strike damage

In service experience = All damage within ADL limits

Example of Mechanical impacts

In service experience = All damage within ADL limits

NDT inspection by non-specialist

LineTOOL: go/no go composite delamination assessment tool

- Prevent flight delay and cancellation due to lack of Non Destructive Testing expert personnel availability
- > Provide quick and reliable statement
- > Already available and used by several Operators

LineMAP: Damage Localisation

- Accurate location of damage on A/C fuselage, automatic integration in A/C DMU (Digital Mock-Up)
- Damage location tracking and report generation
- Already available and used by several operators

LineSIZING: Damage sizing and reporting

- Easy to use device, enable B1 or equivalent mechanics to perform damage sizing on A350 monolithic CFRP.
- Ultrasonic C-scan, automatic damage size measurement.
- Enhanced damage tracking and automatic report creation.

Quick Cosmetic Repair

- Goal : restoration of Expanded Copper Foil (ECF), filling of small damages, flush result
- Wet lay-up process, 1h cure at 100°C
- "Repair Box" pre-defined with all materials in the same packaging

Available in ASR Ordering in small quantity now possible

Structural Bolted Repairs

- Structural repair are bolted doublers
- Critical step is composite drilling → dedicated equipment required
- Pre-cured standard Repair parts defined to avoid on-demand manufacturing (on lead time)

Structural Bonded repair

• Environment conditions.

Controlled humidity & temperature

• Stepping

•either by hand *or* with portable automated machining GSE

• Curing.

>Conventional hot bonder & heating blanket and vacuum bag

• Checks & inspection:

>Conventional ultrasonic method.

23.

BONDED REPAIR

AIRBUS

What's next?

Flying Economically & Efficiently

Flying "Simple"

Overall airframe architecture and components

Design enabling the integration of systems and other functionalities (Laminar technologies)

Design with highly efficient associated production processes

Capabilities

Design and analysis for value Rapid prototyping Virtual testing

Technology enablers

Additive manufacturing Affordable CFRP technologies

In-service support

Self-monitored structures Predictive maintenance solutions

Recycling Recycling and reuse of CFRP structures

Conclusion

- Airbus accumulates a unique experience in Composite technologies and use of advanced numerical analysis
 - Close collaboration with airlines is a strong asset
 - Airbus targets higher state-of-the-art standards to ensure that composite components have at least equivalent safety level than metallic product.
- The in-service experience has validated the designs as well as the certification & maintenance concept
- Composite offers unprecedented benefits in terms of efficiency, durability and maintainability and is not yet at technological saturation level
- Composites are part of the solution to the environmental challenges ahead!

Thank You Q&A

000

A350-1000AIREUS

A35