

MAJOR CHALLENGE MLOSA IMPLEMENTATION

Major Challenge?
Change Management.

MAJOR CHALLENGE

MLOSA IMPLEMENTATION

Involving Management & Labor Unions

Enrolling Volunteers

Training Observers

Secure & Confidential

Targeted enhancements

Systematic observations

Peer to peer observations

MAJOR CHALLENGE

MLOSA IMPLEMENTATION

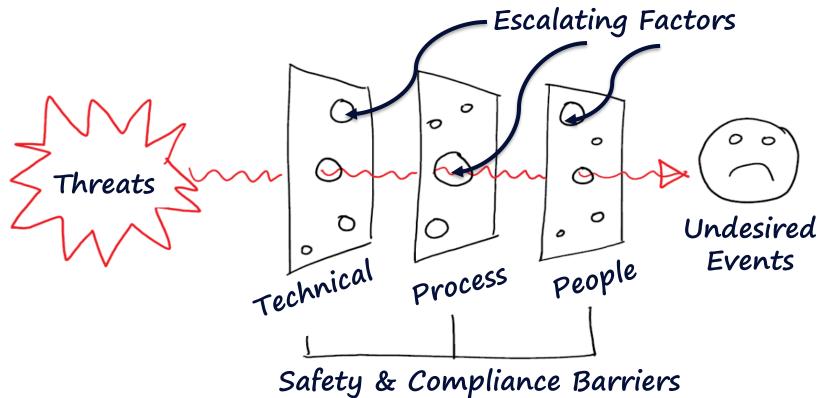
Appoint an Action Planner

Removing BARRIERS

Enable & facilitate ACCEPTANCE

Fast-track CHANGE

Risk Log & Mitigation Strategies


Communication, Involving Labor Unions, Involving Front-Line Management, Training Support.

4 | V1 2018

PREDICTIVE APPROACH

HOW MLOSA IS ENHANCING OUR SMS?

PREDICTIVE APPROACH

HOW MLOSA IS ENHANCING OUR SMS?

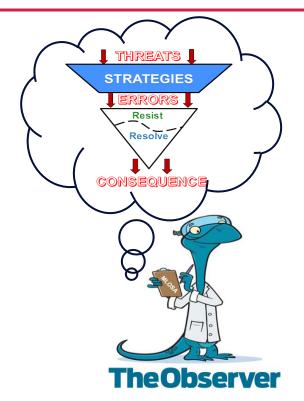
Safety Culture Promotion

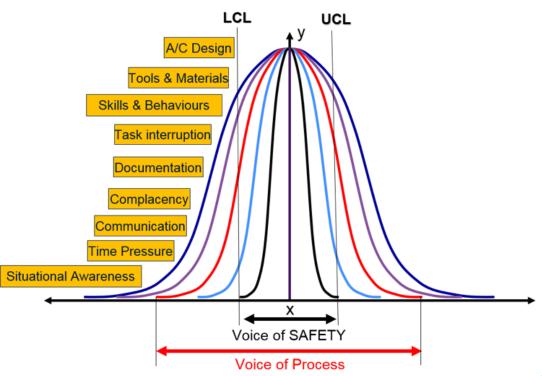
- Confidence climate encourages transparency: 120 Occ. reports/1000 flights.
- Upholding a safety climate to promote good practices and safe behaviors.
- Adherence, collaboration & participation to new safety initiatives.

Collaborative Actions between Safety & Compliance

- MLOSA data fuels our RBO program.
- Improving threats identification & correlation.
- Safety Alert : new media.
- Cross-BU's improvements.

Moving forward


- Adapting content to Millenniums to learn in a way that they can assimilate & gain in competence.
- Competence based training programs
- Safety toolbox talks.
- New Corporate Safety Culture Program.



GETTING ACTIONABLE SAFETY KNOWLEDGE

GETTING ACTIONABLE SAFETY KNOWLEDGE

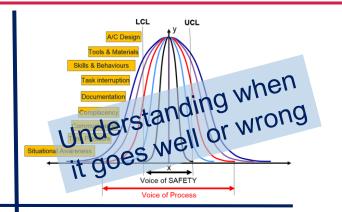
Field observation

Statistical Problem

$$Y = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2 + \beta_3 * X_3 + + \beta_n * X_n + \varepsilon$$

Statistical Solution

$$Ln(\frac{p}{1-p}) = logit(p) = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2 + \beta_3 * X_3 + + \beta_n * X_n + \varepsilon$$

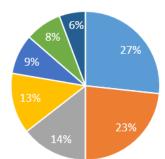

Field Solution

Define Measure

Analyze Improve

Xs Control

Target:


$$Y = f(Xs)$$

GETTING ACTIONABLE SAFETY KNOWLEDGE

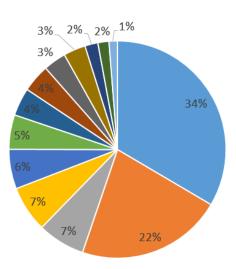
DUMMY FIGURES

- THR-118 Lack or improper installation
- THR-107 Incorrect operating configuration
- THR-058 Failure or damage in service
- THR-047 Disregard of limitation (part, inspection, visit)
- THR-114 Insufficient reliability / performance of a family of elements
- THR-038 Deterioration, Contamination / foreign object
- THR-113 Installation of a unauthorized reference

Binary logistic regression of Error Y`

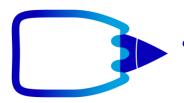
Regression Source	Somme des carrés				
	DL	d'écart ajustée	Moyenne ajustée	Khi deux	Valeur de p
Threat #1	1	34,584	34,5835	34,58	0,000
Threat #2	1	4,229	4,2285	4,23	0,040
Threat #3	1	4,525	4,5246	4,52	0,033
Threat #4	1	4,016	4,0162	4,02	0,045
Threat #5	1	14,302	14,3023	14,30	0,000
Threat #6	1	3.197	3.1973	3.20	0.074

The deviance table contains the P-values for the regression inputs, both of which are less than 0.05 have a statistically significant effect on the process output. In other words, if the P-value is less than 0.05, then the input variable predictor does influence the process output.


Each term of the deviance table has a Chi square value for the like hood ratio test. Chi square value is the test that determines whether a term has an association with the response. Minitab uses Chi square value to calculate the p-value.

Regression Equation $P(1) = \exp(Y')/(1 + \exp(Y'))$

Y' = 2,960 + 2,650 Threat#1 + 0,937 Threat #2 + 1,109 Threat #3 + 0,913 Threat #4


+ 1,646 Threat #5 + 1,007 Threat #6

- EF-394 R: Inadequate tools/materials/fixtures/GSE/IT
- EF-381 P: Lack of situational awareness / routine / complacency
- EF-391 A: Failure to follow-up maintenance procedure / policy
- EF-389 A: Communication procedure not followed
- EF-395 R: Inadequate/unavailable documentation/manuals
- EF-396 R: Inadequate third party support
- EF-383 E: Inadequate planning/order/shift
- EF-380 P: Lack of experience / inadequate skills
- FF-321 Skill unsuitable or insufficient
- EF-384 E: Distractions/interruptions/pressure
- EF-390 A: Improper quality/information control procedures
- EF-099 Documentation unsuitable, erroneous, inaccessible ...
- EF-387 E: Poor system interface / complex aircraft design

GETTING ACTIONABLE SAFETY KNOWLEDGE

Engines

Airframe

Components Line maintenance

Mx/E. Knowledge / Skills

Mx/F. Individual Factors

Mx/A. Information

GETTING ACTIONABLE SAFETY KNOWLEDGE

Changing Personnel Skills

new aircraft technology, new regulations, digital transformation.

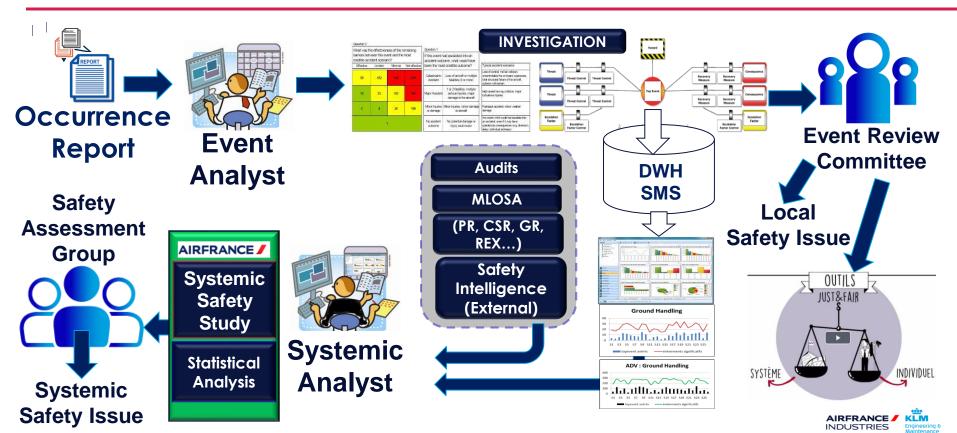
Preserving & spreading skills

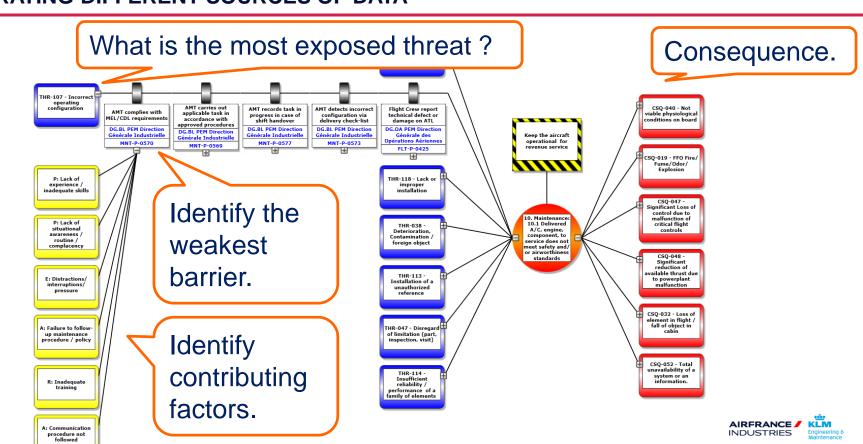
anticipating
workforce
retirement,
intergenerational
knowledge

transmission.

Developing Apprenticeship

welcoming
younger
generations to
prepare for the
future.


Competence Assessment Program.


SAFETY PERFORMANCE

INTEGRATING DIFFERENT SOURCES OF DATA

ADAPTIVENESS

SAFETY PERFORMANCE INTEGRATING DIFFERENT SOURCES OF DATA

ADAPTIVENESS

SHARING MLOSA DATA

SHOULD WE SHARE MLOSA DATA?

- Should we share LOSA data? Yes.
- How? Start up collaborative workshops to address common issues & share best practices.
- Who? Operators, Manufacturers, FAA.
- Topic ? "technical documentation" and "failure to follow procedures" issues. Enhancing technical contents, adapting it to new generations & integrating AMM to fit into new digital tools.

CONCLUSION

Maintenance LOSA: Safety Culture's Probe & Spark.

THANK YOU FOR YOUR ATTENTION

www.afiklmem.com
Christine ZYLAWSKI, FRAeS
Head of Regulatory Compliance | MLOSA Expert chzylawski@airfrance.fr