Closing the loop on Runway Safety

AN AIRBUS COMPANY

Logan Jones – Runway Safety Specialist

2017Jet aircraft accidents

Safety during approach and landing in figures (Yearly on average)

EUROCONTROL – Annual Safety Report 2017

Preparation

ROPS

Prepare the Approach

Situational Awareness

- Anticipate
- Detect
- Correct
- Decide

🗹 AIB Manager 🤤		17:48				70 % 🗖			
🗙 My Flight	LANDING	F-A320	A320	-214		Ģ	*	₿	
IN-FLIGHT	09L								
EGLL/LHR HEATHF	Row						13		
RWY	09L	ONF	CONF F	ULL		1			
WIND °/kt (12	20/2) VAPP		136	kt		1			
OAT °C 5 (ISA	-10) EO GA	SPEED	135	kt		I			
QNH hPa 1	1010 FO GA	GRADIENT	6.9	%			ma		
RWY COND 2-Medium to	poor AT 158	3 ft	010				202	20 m	
LW T	60 MLW (PERF)	90	Т					
LDG CG Basic (S	STD)								
LDG CONF AUTO C	ONF					Ē			
AIR COND Off (S	STD)				F-LD	901	-	50 m	
A-ICE	Off				1881 m	ŝ		•	
APPR TYPE Normal (S	STD)							•	
GA GRADIENT % 2.1 (STD)						14		
VPilot kt	0							¥ 2	
LDG TECH MAN-A/THR on (STD)								
BRK MODE Manual (S	STD)								
REV Yes (S	STD)								
MELO CDLO E	GAM 0					091			
	EV								
GLEAN WODI		~ 1	14			2	,		
		_				SX			

Technologies for Improving Safety at Landing

SAFETY NETS

8

Runway Overrun Prevention System (ROPS) Designed to prevent overruns at landing

3+ million landings with ROPS

1,500+ aircraft

equipped with ROPS

90+ operators trust ROPS

9

How does an overrun occur?

Small deviations can have large impacts on the landing distance

AN AIRBUS COMPANY

	I	I	I	I
Nominal In-Flight Landing Distance		15% safe	ety factor	
5kt Tail-Wind (additional ground speed)				
Each additional 10ft above threshold over 50ft				
Each additional 1s of flare over 7s				
Each additional 1s delay of pedal braking			I	I
Each additional 3s delay applying max reverse		I.		
Runway Friction 10% worse than expected				
			'	

5%

10 %

Т

Т

15 %

o %

Т

Enhanced safety throughout the approach...and more

Combination of 2 on-board technologies to enhance runway safety

SmartLanding®

Increased crew situational awareness

- Preventive alerts allowing corrections during final approach phase
- Enhanced detection of unstabilized approaches by the crew (unstable)
- > Monitoring of erroneous altimeter setting
- Alerting when the aircraft is not aligned with the runway

Performance-based runway overrun protection

ROPS+

- > Protective alerts during the landing phase
- Real time landing distance assessment for stopping distances
- > Compatible with foreseen EASA mandate for ROAAS ref. NPA_2018_12 <u>link</u>

Braking Action Computation Function (BACF) & RunwaySense^{by NAVBLUE}

IMPROVING INFORMATION ON RUNWAY CONDITIONS

Improve runway conditions awareness together ... but how?

Braking Action Computation Function (BACF)

Use the data measured by the aircraft during its deceleration roll to identify the braking action level...

Actual braking performance

Reference Aircraft Performance Model

...and make it available to the airspace users to improve runway condition awareness

Conclusion – Closing the Loop

Provide the **right** tools and information to the flight crew, to make the **right** decision at the **right** time

Logan Jones LOGAN.JONES@NAVBLUE.AERO WWW.NAVBLUE.AERO

© NAVBLUE INC. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT. THIS DOCUMENT AND ALL INFORMATION CONTAINED HEREIN IS THE SOLE PROPERTY NAVBLUE INC. NO INTELLECTUAL PROPERTY RIGHTS ARE GRANTED BY THE DELIVERY OF THIS DOCUMENT OR THE DISCLOSURE OF ITS CONTENT. THIS DOCUMENT SHALL NOT BE REPRODUCED OR DISCLOSED TO A THIRD PARTY WITHOUT THE EXPRESS WRITTEN CONSENT OF NAVBLUE INC. THIS DOCUMENT AND ITS CONTENT SHALL NOT BE USED FOR ANY PURPOSE OTHER THAN THAT FOR WHICH IT IS SUPPLIED. THE STATEMENTS MADE HEREIN DO NOT CONSTITUTE AN OFFER. THEY ARE BASED ON THE MENTIONED ASSUMPTIONS AND ARE EXPRESSED IN GOOD FAITH. WHERE THE SUPPORTING GROUNDS FOR THESE STATEMENTS ARE NOT SHOWN, NAVBLUE INC. WILL BE PLEASED TO EXPLAIN THE BASIS THEREOF. NAVBLUE INC., ITS LOGO, AIRBUS, A300, A318, A319, A320, A321, A330, A340, A350, A380, A400 MARE REGISTERED TRADEMARKS.