Lessons Learned From Recent Incident

Singapore Aviation Safety Seminar 2019

7 March 2019

Outline

- 1. Update on TSIB
- 2. Lessons learned from a recent incident

UPDATE ON TSIB

Transport Safety Investigation Bureau (TSIB)

- AAIB was restructured to become TSIB on 1 August 2016 to include marine safety investigation
- 11 air safety investigators, 4 marine safety investigators, 1 rail safety investigator and 3 support officers
- Expanding to cover certain land transport vehicles

Transport Safety Investigations Act

- New omnibus legislation
 - Passed on 6 August 2018
 - Single legislation to govern the conduct of safety investigations
 - Replacing the investigation legislation in Part IIA of the Air Navigation Act on Accidents and Incidents Investigation
 - Developing subsidiary legislation

Scope of TSI Act

- Aviation
- Marine
- Land
 - Domestic and international rail (in future), e.g.
 MRT, Sky train at Changi Airport, Sentosa monorail
 - When directed by the Minster for Transport –
 Incidents involving buses on public bus services contract with LTA

Air turn back due to fuel discrepancy

LESSONS LEARNED FROM A RECENT INCIDENT

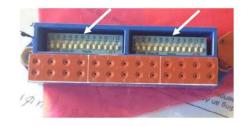
Synopsis

- "FUEL DISAGREE" appeared one hour into flight on a B777-200ER (Extended Range Operation)
- Fuel quantity onboard calculated by FMC (departure fuel - fuel burnt off) < fuel measured by the aircraft FQIS. The difference between the two was increasing
- After consulting home base, return to Singapore, aircraft landed without incident
- Manual check on fuel quantity discovered that the aircraft was about 41 tons extra

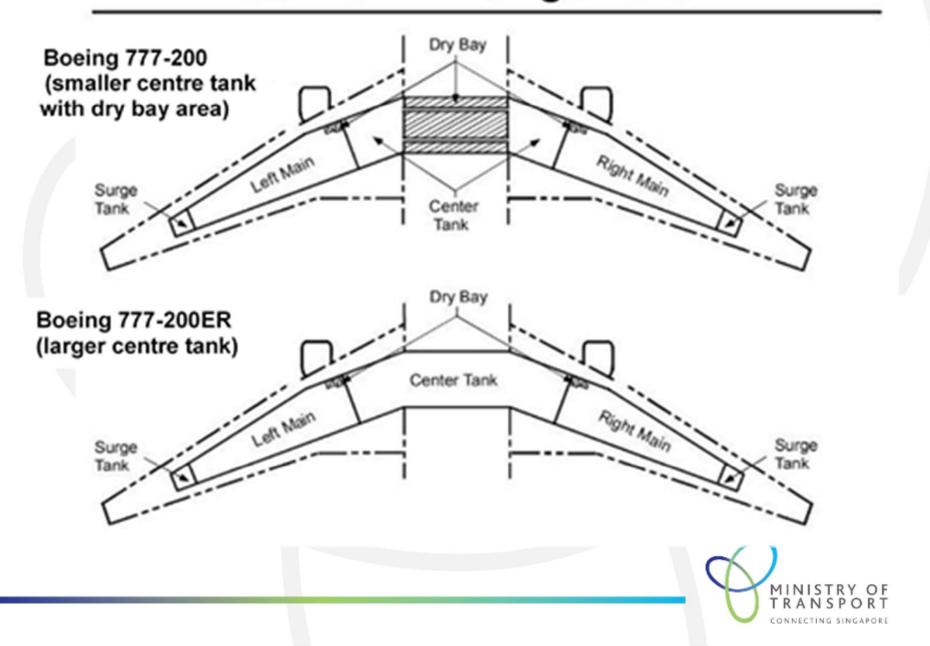
What happened before departure (1/2)

- Arrival fuel was at 5.5 tons, departure fuel was 86 tons. Only need to uplift 80.5 tons of fuel
- Bowser record showed fuel uplifted was 121.5 tons, about 41 tons extra
- However, FQIS showed 86 tons
- Huge discrepancy manual check on fuel quantity was required

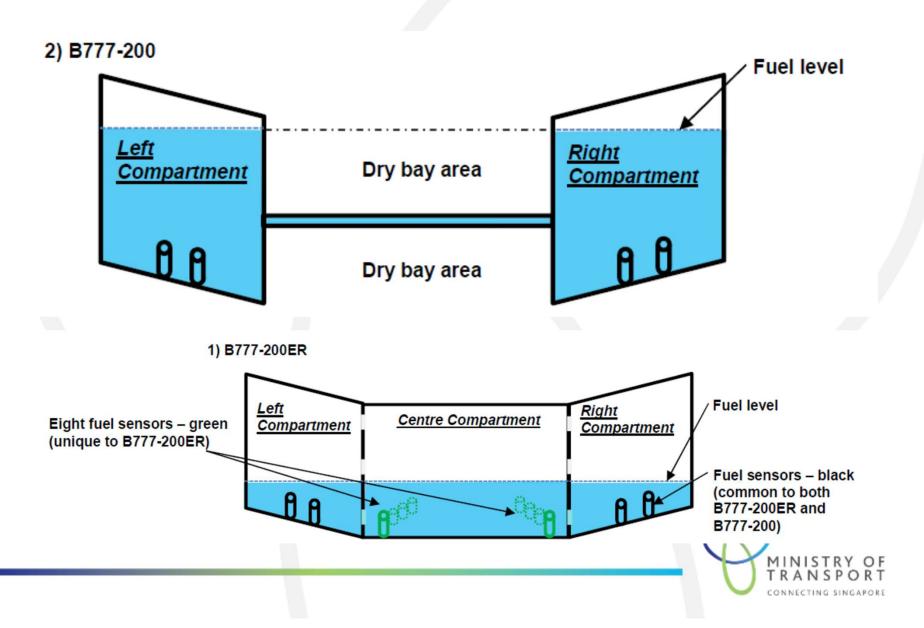
What happened before departure (2/2)


- Magnastick check was performed and the fuel quantity was found tallied with FQIS, i.e., 86 tons
- Bowser operator was convinced that he might have forgotten to reset the fuel counter before the start of refueling and adjusted his fuel uplifted
 - Note: It was found out later that the bowser system would prevent the start of refueling if the fuel counter is not reset to zero

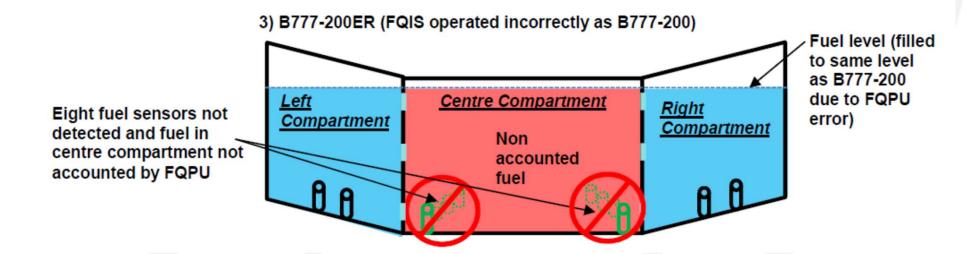
B777 fuel tank arrangement


- B777 aircraft has different fuel tanks arrangement for B777-200 and B777-200ER (extended range)
- Centre tank of -200ER is bigger than -200, the difference is 40.5 tons

(In tonnes)	Boeing 777-200	Boeing 777-200ER
Center tank	36.612	77.063
Left tank	27.460	28.227
Right tank	27.460	28.227



- The Program Switch Module (PSM) setting dictates the fuel tank variant
- PSM communicates with fuel quantity processing unit (FQPU) the type of fuel tanks arrangement


777 Fuel Tank Arrangement

Fuel quantity sensors arrangement

Fuel sensors not detected

Example of magnastick in fuel tank

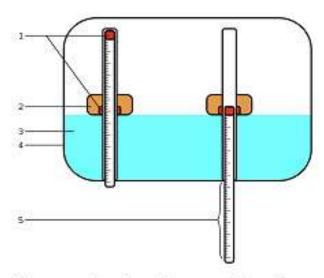


Diagram showing the operation of a floatstick to indicate fuel remaining in an aircraft fuel tank:

- 1 magnets
- 2 float
- 3 fuel in tank
- 4 fuel tank wall
- 5 indication of remaining fuel in tank when floatstick is pulled down.

Key findings

- Aircraft FQPU was likely operating in B777-200 mode instead of the B777-200ER
 - 40.5 tons of fuel uplifted into center tank was not calculated by FQIS
- Manual fuel quantity check (Magnastick) was not carried out properly by ground staff
 - Refueling training was only carried in out theory during initial training, no recurrent training
 - No practical training on Magnastick check
- Bowser operator not familiar with bowser operation

Improvements

- MRO conducted a once off refueling refresher training and competency assessments for their personnel
- Practical training on taking magnastick reading also provided using a fuel tank simulator training tool
- Ground staff were reminded to consult their managers whenever they were not familiar with any tasks assigned
- Boeing upgraded subsequent versions of the FQPU to be able to detect and prevent incorrect program pins configuration of the PSM

Recommendations

- Fuel is a critical element for aircraft operation
 - Should magnastick check be performed independently by more than one qualified person just like other critical system on the aircraft?
- Magnastick check is seldom required and to ensure technicians are confident and competent in performing the task
 - should this be included in refresher training?

What more we wish to have

- Can the aircraft system be smart enough to detect or alert the flight crew or maintenance crew when there is a mismatch between the aircraft model referenced by the FQIS and the actual aircraft model?
 - Boeing reviewed two areas of potential safety concerns pertaining to overfuelling, caused by the FQIS referencing an incorrect aircraft model, namely, runway overrun in a rejected take-off and insufficient climb capability. Boeing determined that the aircraft would have sufficient safety margin in both scenarios and did not consider that the scenarios presented a safety hazard.

What could have done better

- Completing the investigation in a shorter time
 - Better control over the coordination with the stakeholders
 - Lengthy discussions with stakeholders MRO, regulator, aircraft manufacturer
 - Unable to conclusively determine that it was the PSM fault

THANK YOU

