

Dedicated to innovation in aerospace Using blended learning to make AR work in maintenance

Jsing blended learning to make AR work in maintenance error reduction

Anneke Nabben | FSF- IASS 2019 | Taipei

Dedicated to innovation in aerospace

https://digitaltmuseum.org/021018293226/kalmar-telefonstation-fore-automatiseringen-1946-interior

on by Blended Learning, IASS 2019, ©NLR

1.08.98

https://www.theguardian.com/business/picture/2015/mar/10/kipper-williams-on-the-apple-watch

KipperWilliams

A MICHAE HOD

-

0

2

ource https://www.marketingfacts.nl/berichten/waarom-zou-een-ziekenhuismedewerker-twitteren

tenance Error Reduction via Blended Learning, IASS 2019, ©NLR

Complacency

Automation bias

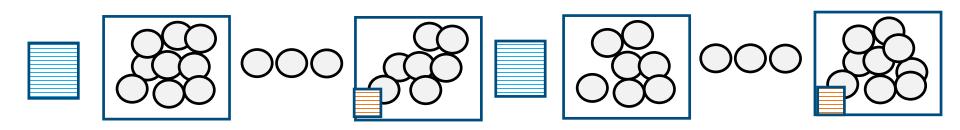
Skill decay

Skill atrophy

Automation design

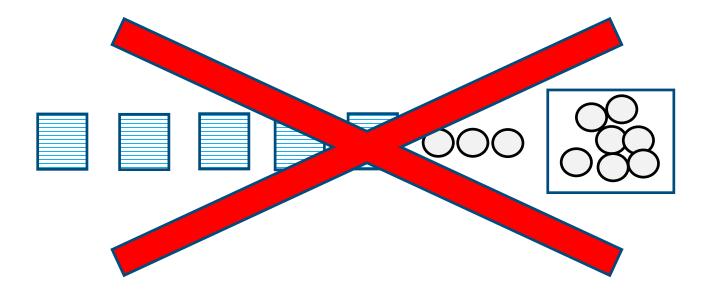
Requirements mitigation by training

- Work with automated system
- Problem based training
- Performance without automation
- Experience non accuracy
- Recurrent training


Training needs

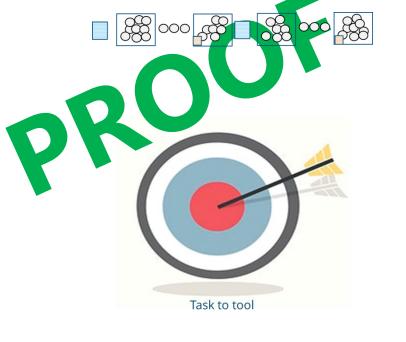
Training concept

Training design

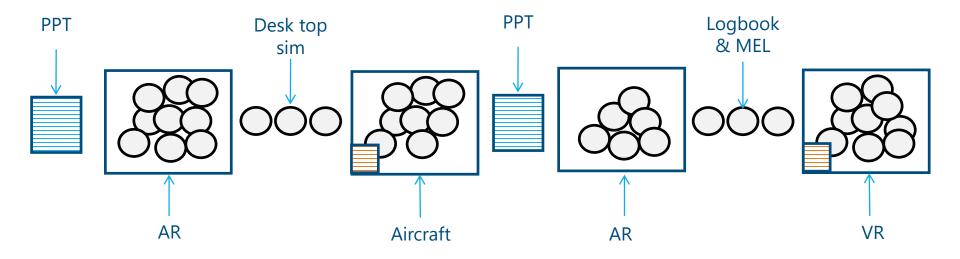

Training media

Supporting & JIT theory

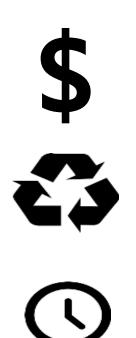
Cool technology! Promises!


Training media user requirements?

Training requirements


- Cooperation
- Coaching
- Performance Monitoring
- Adaptivity
- Complexity Factors
- Instructor Operating requirements

Technical requirements

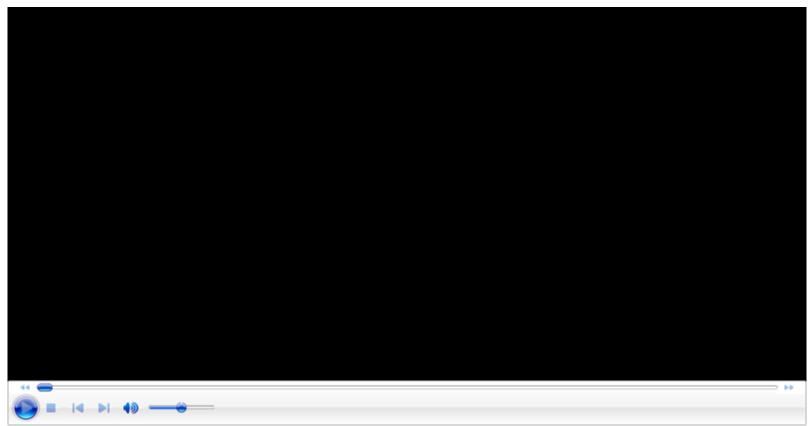

- Aircraft, system and cockpit physics
- Aircraft, System and cockpit behaviour
- Tools
- Environment

Blended Learning Environment Process

KLM blended learning project

Maintenance Error Reduction via Blended Learning, IASS 2019, ©NLR

Active problem solving without automation: Supports system understanding Prevents automation risks



User requirements:

- Cooperation in problem solving
- Using system description manuals

Maintenance Error Reduction via Blended Learning, IASS 2019, ©NLR

Control gr	oup	
Traditional tra	ining 3 experienced mechanics 3 basic training students	
Evaluation	Trainee experience knowledge Impact	
		Con
AR group		Re
New training	3 experienced mechanics 3 basic training students	
Evaluation	Trainee experience knowledge Impact	

Augmented Reality for Maintenance Training

(nlr

Criteria	Subcriteria	AR	Traditional
System knowledge & comprehension	Active knowledge	83%	50%
	Passive knowledge	80%	73%
	Able to recall 2D (and 3D*) model	66%*	0%
	Confidence to apply knowledge into practice	83%	0% (50% felt to have only basic knowledge)
lmpact measurement	Component location	64%	45%
	Explaining airflow	63%	19%
	Explaining function	33%	25%

Trainee feedback

Traditional training	Training with HoloLens
Good instructor skills	Student interaction Student collaboration Variety in training methods Transfer from 2D > 3D > Real
No student interaction Losing attention No supporting tools Passive: sit back & listen Too much information Lack system knowledge Training time too long	Comfort: HoloLens can be exhausting

Part 147 Practical task performance

When selected well and properly integrated in the training design:

- Practice without safety issues
- Motivating
- Learning styles
- Accessible
- Formal/ informal

Deep understanding
Faster
Less mistakes
Improved safety

26

Maintenance Error Reduction via Blended Learning, IASS 2019, ©NLR

Dedicated to innovation in aerospace

Fully engaged Royal Netherlands Aerospace Centre

NLR Amsterdam Anthony Fokkerweg 2 1059 CM Amsterdam The Netherlands

p) +31 88 511 31 13 e) info@nlr.nl i) www.nlr.org NLR Marknesse Voorsterweg 31 8316 PR Marknesse The Netherlands

p) +31 88 511 44 44 e) info@nlr.nl i) www.nlr.org

Foundations role

- 1. Assemble an AeroSafety World or website article to highlight the usefulness of a process to select media and build blended learning environments
- 2. Invite early adopters around the world to share lessons learned in introducing innovative training media

INTERNATIONAL AIR SAFETY SUMMIT