Independence · Integrity · Professionalism

Achieving GA FDM -Application of a lightweight recording system

Brian C. Kuo, Ph.D. Safety Investigator Division of Research and Engineering

Outline

- Background information
- Recorder chosen and test setup
- Results
 - Recording data validation
 - Image and audio qualities
 - Image identification, why?
- Instrumental image identification
 - Implication to FDM
- Concluding remarks

Why GA FDM?

- Civil air transport becomes safer today
- Dealing with GA investigation most of time
- Challenges in GA investigation
 - 1. Accident scene in remote/ mountainous area
 - 2. Lack of data from navigation aids
 - 3. Lack of weather data
 - 4. Lack of terrain database
 - 5. Usually no mean of onboard recording device available
- Mostly loss of control in-flight (LOC-I) occurrences

Solution to enhance safety?

Justification of LRS

- In Taiwan, most of aircraft under 5,700 kg / rotorcraft under 3,180 kg are not equipped with flight recorders.
- Availability, Affordability, and Applicability
- ED-155 (LRS min. performance specs) compliance?
- Investigative benefits: reduce time/cost, no need to entirely rely on witness interview, site survey, traditional investigation... etc.
- Operators/Owners' benefit: operation review, training, FOQA, FDM and SMS program

Recorder Chosen

- Compact size: 4" x 2.5" x 2"
- 8.8 oz (0.55 lbs) ~ 250 grams
- Self-contained data acquisition
- Supply Voltage 14 32V DC
- Crash hardened internal memory
- Removable memory (SD card):
- 16GB, 4 hrs of video, 200+ hrs of inertial data
- Internal memory: 8 GB (2 hrs of video)
- TC on AS350 / EC 135/145/175 / AW139 etc.
- STC on AS350 / AS365 / Bell 206 / AW109/ Cessna 172

Recorder Chosen

Recorded parameters (4 Hz):

- GPS Location (Lat./Long./Alt.)
- Ground speed
- Vertical Speed
- Heading
- Pitch / Roll Attitude
- Pitch/ Roll/ Yaw rate
- Lat. / Long./ Normal acceleration
- Cockpit images (4 Hz), ambient audio and ATC communication

Test Setup

- Three aircraft types: Bell206 / AS365 STOL CH-701 (ultra-light)
- Handheld GPS for data validation

Recording data validation

Audio/Image qualities

- Images exported in 4 Hz and audio in pieces of 0.5 secs in 4 Hz.
- Image resolution 1600x1200 pixels
- Powerplant / rotor data collected from images and audio
- Audio needs stitching or direct re-recording before use
- AS365 main rotor frequency matches that in ASC database

Why analyze images?

- An advantage over advanced integrated avionic system
- Images contain information not recorded as parameters
- Powerplant related data particularly important for V1000
- Area of interest:
 - Main rotor / tail rotor RPM
 - Torque
 - Warning panel
 - Exterior environment
 - Crew interaction (if dual pilots)
- A mean to confirm if LRS is correctly calibrated

However...

- Real in-flight images are different from simulation images
- Many occasions we have to deal with irregular images

Pilot obstruction

Sunlight luminosity

Needles overlapping

Identifying the instrument reading

- 12000+ images from Bell 206 analyzed
- 50 min of flight data
- Use airspeed indicator and altimeter as benchmarks
- Image binarization required
- Two algorithms, same accuracy
 - Static binarization and needles matching
 - Dynamic binarization and Eigen analysis
- Efficiency improvement

Automatic, fast, and accurate

- Both algorithms provided satisfying results on both altitude and airspeed comparison
- Further efficiency improvement through Eigen analysis can reduce computation time by 5 times

Implication of LRS to GA FDM

- Flight data storage with easy access for retrieval
- Understand aircraft states and handling qualities
- Event detection & FDM program for GA operators
- Lightweight Recording System vs. Modern Advanced Integrated Avionic System
- Superior crash survivability
- Understand flight instrument status and cockpit environment thru recorded images and audio
- Elevate efficiency of accident investigation

To wrap up...

- A study on lightweight recording system for GA conducted
- Flight tests on three types of aircraft: AS365, Bell 206, and ultra-light
- Basic flight parameters / data recorded with satisfying accuracy
- An automatic process developed to identify flight instrument reading from 12,000+ recorded images with accuracy and efficiency
- Image identification on flight instrument provided efficient and quick access to data that originally may not be available
- Lightweight recording system elevates efficiency of investigation and safety level of GA

Conclusions

What role should the Foundation consider in terms to further the state of understanding, awareness or implementation of the themes of this presentation?

- 1. Partner with GA advocate organization (e.g. AOPA) to reach out GA owners/pilots to promote use of recording device(s).
- 2. Organize regional workshops for GA operators to promote use of LRS and safety awareness.
- 3. Assemble promotional material on social media to highlight benefits of LRS and its recorded data for FDM

